Annulated Heterocyclic Bioisosteres of Norarecoline. Synthesis and Molecular Pharmacology at Five Recombinant Human Muscarinic Acetylcholine Receptors

Journal of Medicinal Chemistry
1995.0

Abstract

A series of O-alkylated analogs of 5,6,7,8-tetrahydro-4H-isoxazolo[4,5-c]azepin-3-ol (THAO) were synthesized and characterized as ligands for muscarinic acetylcholine receptors (mAChRs). O-Methyl-THAO (4a), O-ethyl-THAO (4b), O-isopropyl-THAO (4c), and O-propargyl-THAO (4d) were shown to be potent inhibitors of the binding of tritiated quinuclidinyl benzilate (QNB), pirenzepine (PZ), and oxotremorine-M (Oxo-M) to tissue membrane preparations. In the [3H]-Oxo-M binding assay, receptor affinities in the low nanomolar range were measured for 4a (IC50 = 0.010 microM), 4b (IC50 = 0.003 microM), 4c (IC50 = 0.011 microM), and 4d (IC50 = 0.0008 microM). Pharmacological effects (EC50 or Ki values) and intrinsic activities (per cent of maximal carbachol responses) were determined using five recombinant human mAChRs (m1-m5) and the functional assay, receptor selection and amplification technology (R-SAT). Compound 4c antagonized carbachol-induced responses at m1, m3, and m5. With the exception of 4b, which was an antagonist at m5, 4a,b,d showed partial agonism at m1-m5 with very similar subtype selectivity (m2 > m4 > m1 > or = m3 > m5). Agonist index values for 4a-d, which were calculated from [3H]QNB (brain) and [3H]Oxo-M (brain) binding data, were shown to be predictive of pharmacologically determined intrinsic activities at m1-m5, the same rank order of intrinsic activity being observed at all five mAChRs (4a > 4d > 4b > 4c). It is concluded that within this class of high-affinity mAChR (m1-m5) ligands, containing secondary amino groups, minor changes of the bioisosteric ester alkyl groups have marked effects on potency and, in particular, intrinsic activity.

Knowledge Graph

Similar Paper

Annulated Heterocyclic Bioisosteres of Norarecoline. Synthesis and Molecular Pharmacology at Five Recombinant Human Muscarinic Acetylcholine Receptors
Journal of Medicinal Chemistry 1995.0
A novel class of conformationally restricted heterocyclic muscarinic agonists
Journal of Medicinal Chemistry 1986.0
Heterocyclic muscarinic agonists. Synthesis and biological activity of some bicyclic sulfonium arecoline bioisosteres
Journal of Medicinal Chemistry 1988.0
Synthesis and structure-activity relationships of heterocyclic analogues of the functional M1 selective muscarinic agonist hexyloxy-TZTP
Bioorganic & Medicinal Chemistry Letters 1992.0
Bioisosteres of Arecoline: 1,2,3,6-Tetrahydro-5-pyridyl-Substituted and 3-Piperidyl-Substituted Derivatives of Tetrazoles and 1,2,3-Triazoles. Synthesis and Muscarinic Activity
Journal of Medicinal Chemistry 1994.0
Muscarinic receptor binding and activation of second messengers by substituted N-methyl-N-[4-(1-azacycloalkyl)-2-butynyl]acetamides
Journal of Medicinal Chemistry 1991.0
Synthesis and biological activity of a novel class nicotinic acetylcholine receptors (nAChRs) ligands structurally related to anatoxin-a
Bioorganic & Medicinal Chemistry Letters 2011.0
Synthesis and muscarinic receptor activity of ester derivatives of 2-substituted 2-azabicyclo[2.2.1]heptan-5-ol and -6-ol
Journal of Medicinal Chemistry 1992.0
Synthesis and biological evaluation of isoxazoline derivatives as potent M1 muscarinic acetylcholine receptor agonists
Bioorganic & Medicinal Chemistry Letters 2015.0
Muscarinic cholinergic agonists and antagonists of the 3-(3-alkyl-1,2,4-oxadiazol-5-yl)-1,2,5,6-tetrahydropyridine type. Synthesis and structure-activity relationships
Journal of Medicinal Chemistry 1991.0