Esters of 3-Pyridylacetic Acid That Combine Potent Inhibition of 17.alpha.-Hydroxylase/C17,20-Lyase (Cytochrome P45017.alpha.) with Resistance to Esterase Hydrolysis

Journal of Medicinal Chemistry
1995.0

Abstract

Esters of 3- and 4-pyridylacetic acid have been prepared and tested for inhibitory activity toward the human testicular 17 alpha-hydroxylase/C17,20-lyase and human placental aromatase enzymes. The structural features required for optimal inhibition of the hydroxylase/lyase enzyme were a 3-pyridine ring, methyl substitution alpha to the carbonyl group, and a bulky alkoxycarbonyl substituent. The compounds with the greatest selectivity were isopinocampheyl 2-methyl-2-(3-pyridyl)propanoate, 9, 1-adamantyl 2-methyl-2-(3-pyridyl)propanoate, 12, and 2-methyl-2-adamantyl 2-methyl-2-(3-pyridyl)propanoate, 14, which, while inhibiting the aromatase activity with IC50 values of 30, 35, and 40 microM, respectively, exhibited IC50 values toward hydroxylase/lyase of between 13 and 90 nM. For comparison, ketoconazole gave an IC50 value of 15 microM against aromatase and values of 65 and 26 nM for inhibition of the hydroxylase and lyase activities, respectively. Some of the structural features required for enzyme inhibition also conferred resistance to esterase hydrolysis, in vitro using rat liver microsomes as a source of the esterase activity. Therefore these esters are lead compounds in the development of inhibitors of androgen biosynthesis for the treatment of hormone-dependent prostatic cancer.

Knowledge Graph

Similar Paper

Esters of 3-Pyridylacetic Acid That Combine Potent Inhibition of 17.alpha.-Hydroxylase/C17,20-Lyase (Cytochrome P45017.alpha.) with Resistance to Esterase Hydrolysis
Journal of Medicinal Chemistry 1995.0
3- and 4-Pyridylalkyl Adamantanecarboxylates:  Inhibitors of Human Cytochrome P450<sub>17</sub><sub>α</sub> <b>(17</b>α-Hydroxylase/C<sub>17,20</sub>-Lyase). Potential Nonsteroidal Agents for the Treatment of Prostatic Cancer
Journal of Medicinal Chemistry 1996.0
Novel Steroidal Inhibitors of Human Cytochrome P45017.alpha.-Hydroxylase-C17,20-lyase): Potential Agents for the Treatment of Prostatic Cancer
Journal of Medicinal Chemistry 1995.0
Synthesis and Evaluation of Novel Steroidal Oxime Inhibitors of P450 17 (17α-Hydroxylase/C17−20-Lyase) and 5α-Reductase Types 1 and 2
Journal of Medicinal Chemistry 2000.0
17-Imidazolyl, Pyrazolyl, and Isoxazolyl Androstene Derivatives. Novel Steroidal Inhibitors of Human Cytochrome C<sub>l7,20</sub>-Lyase (P450<sub>17α</sub>)
Journal of Medicinal Chemistry 1997.0
Synthesis and Evaluation of Pregnane Derivatives as Inhibitors of Human Testicular 17α-Hydroxylase/C<sub>17,20</sub>-Lyase<sup>,</sup>
Journal of Medicinal Chemistry 1996.0
Synthesis and Evaluation of 17-Aliphatic Heterocycle-Substituted Steroidal Inhibitors of 17α-Hydroxylase/C17−20-Lyase (P450 17)
Journal of Medicinal Chemistry 2000.0
Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives
Journal of Medicinal Chemistry 1985.0
Hydroxyperfluoroazobenzenes: novel inhibitors of enzymes of androgen biosynthesis
Journal of Medicinal Chemistry 1990.0
Novel 17-Azolyl Steroids, Potent Inhibitors of Human Cytochrome 17α-Hydroxylase-C<sub>17,20</sub>-lyase (P450<sub>17</sub><sub>α</sub>):  Potential Agents for the Treatment of Prostate Cancer
Journal of Medicinal Chemistry 1998.0