Synthesis of Non-nucleoside Analogs of Toyocamycin, Sangivamycin, and Thiosangivamycin:  The Effect of Certain 4- and 4,6-Substituents on the Antiviral Activity of Pyrrolo[2,3-d]pyrimidines

Journal of Medicinal Chemistry
1996.0

Abstract

A number of 4-substituted 7-(ethoxymethyl)- and 7-[(2-methoxyethoxy)methyl]pyrrolo[2,3-d]-pyrimidine-5-carbonitrile and -5-thiocarboxamide derivatives and several 7-substituted 4,6-diaminopyrrolo[2,3-d]pyrimidine-5-carbonitrile, -5-carboxamide, and -5-thiocarboxamide analogs related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for activity against human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1). Biologically, modifications at the 4-position were not well tolerated in cell culture, and in almost all cases no activity against HCMV or HSV-1 was observed. Furthermore, none of the compounds inhibited the growth of L1210 murine leukemic cells in vitro. In sharp contrast to the 4-substituted compounds, all of the 4,6-diamino 5-nitrile and the 5-thioamide analogs were active against HCMV, whereas the 5-carboxamides were inactive. The corresponding 4-amino 6-methylamino and 6-dimethylamino 5-nitrile analogs were inactive against HCMV, establishing that an amino group at both C-4 and C-6 is a likely requirement for antiviral activity. Overall, our results demonstrate that an amino group at C-4 and a thioamide moiety at C-5 of a 7-substituted pyrrolo[2,3-d]pyrimidine are essential for activity against HCMV, whereas a 4,6-diamino analog does not necessarily require a thioamide group at C-5 for activity against HCMV.

Knowledge Graph

Similar Paper

Synthesis of Non-nucleoside Analogs of Toyocamycin, Sangivamycin, and Thiosangivamycin:  The Effect of Certain 4- and 4,6-Substituents on the Antiviral Activity of Pyrrolo[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1996.0
Synthesis of Non-nucleoside Analogs of Toyocamycin, Sangivamycin, and Thiosangivamycin:  Influence of Various 7-Substituents on Antiviral Activity
Journal of Medicinal Chemistry 1996.0
Design, synthesis and activity against human cytomegalovirus of non-phosphorylatable analogs of toyocamycin, sangivamycin and thiosangivamycin
Bioorganic & Medicinal Chemistry Letters 1992.0
Synthesis, cytotoxicity, and antiviral activity of certain 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine nucleosides related to toyocamycin and sangivamycin
Journal of Medicinal Chemistry 1989.0
Synthesis and Evaluation of Certain Thiosangivamycin Analogs as Potential Inhibitors of Cell Proliferation and Human Cytomegalovirus
Journal of Medicinal Chemistry 1995.0
Synthesis and antiviral activity of some 7-[(2-hydroxyethoxy)methyl]pyrazolo[3,4-d]pyrimidine analogs of sangivamycin and toyocamycin
Journal of Medicinal Chemistry 1990.0
Synthesis, cytotoxicity, and antiviral activity of some acyclic analogs of the pyrrolo[2,3-d]pyrimidine nucleoside antibiotics tubercidin, toyocamycin, and sangivamycin
Journal of Medicinal Chemistry 1989.0
Arabinofuranosylpyrrolo[2,3-d]pyrimidines as potential agents for human cytomegalovirus infections
Journal of Medicinal Chemistry 1990.0
Synthesis and antiviral activity of certain 4-substituted and 2,4-disubstituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1988.0
Synthesis and antiviral activity of certain 4- and 4,5-disubstituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1988.0