Synthesis, Resolution, and Preliminary Evaluation of trans-2-Amino-6(5)-hydroxy-1-phenyl-2,3-dihydro-1H-indenes and Related Derivatives as Dopamine Receptors Ligands

Journal of Medicinal Chemistry
1996.0

Abstract

The present work reports the synthesis of enantiomeric pairs of the trans-2-amino-6-hydroxy-1-phenyl-2,3-dihydro-1H-indene [(+)-14a, (-)-14a] and trans-2-amino-5-hydroxy-1-phenyl-2,3-dihydro-1 H-indene [(+)-14b, (-)-14b] and their N,N-di-n-propyl [(+)-and (-)-15a,b], N-methyl-N-allyl [(+)-and (-)-16a,b], and N-methyl-N-n-propyl [(+) and (-)-17a,b] derivatives obtained by a combination of stereospecific reactions and optical resolution. The new compounds were evaluated for their affinity at the dopamine D1 and D2 receptors. The amines (+)- and (-)-14a, incorporating the D1 pharmacophore 2-phenyl-2-(3-hydroxyphenyl)ethylamine in a trans extended conformation, and their derivatives displayed D1 and D2 affinity in the nanomolar range. On the other hand, the enantiomers (+)- and (-)-14b, (+)- and (-)-15b displayed high affinity and selectivity for the D1 receptor. In a preliminary behavioral study on rats (+)-14b, and to a greater extent (+)-15b, promoted episodes of intense grooming, thus indicating that they act as central D1 agonists. The trans-2-amino-5-hydroxy-1-phenyl-2,3-dihydro-1H-indenes (+)-14b and (+)-15b represent selective D1 agonists lacking a catechol group, which should meet the prerequisites for a central nervous system penetration.

Knowledge Graph

Similar Paper

Synthesis, Resolution, and Preliminary Evaluation of trans-2-Amino-6(5)-hydroxy-1-phenyl-2,3-dihydro-1H-indenes and Related Derivatives as Dopamine Receptors Ligands
Journal of Medicinal Chemistry 1996.0
Preparation and Pharmacological Characterization of trans-2-Amino-5(6)-fluoro-6(5)-hydroxy-1-phenyl-2,3-dihydro-1H-indenes as D<sub>2</sub>-like Dopamine Receptor Agonists
Journal of Medicinal Chemistry 2005.0
trans-2,3-Dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline:  Synthesis, Resolution, and Preliminary Pharmacological Characterization of a New Dopamine D<sub>1</sub>Receptor Full Agonist
Journal of Medicinal Chemistry 2006.0
Evaluation of cis- and trans-9- and 11-Hydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridines as Structurally Rigid, Selective D1 Dopamine Receptor Ligands
Journal of Medicinal Chemistry 1995.0
Synthesis and pharmacological characterization of 2-(4-chloro-3-hydroxyphenyl)ethylamine and N,N-dialkyl derivatives as dopamine receptor ligands
Journal of Medicinal Chemistry 1992.0
Synthesis, resolution, absolute stereochemistry, and enantioselectivity of 3',4'-dihydroxynomifensine
Journal of Medicinal Chemistry 1984.0
Conjugated Enynes as Nonaromatic Catechol Bioisosteres:  Synthesis, Binding Experiments, and Computational Studies of Novel Dopamine Receptor Agonists Recognizing Preferentially the D<sub>3</sub>Subtype
Journal of Medicinal Chemistry 2000.0
Binding and Preliminary Evaluation of 5-Hydroxy- and 10-Hydroxy-2,3,12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-ij]isoquinolines as Dopamine Receptor Ligands
Journal of Medicinal Chemistry 2000.0
High Affinity Hydroxypiperidine Analogues of 4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidine for the Dopamine Transporter:  Stereospecific Interactions in Vitro and in Vivo
Journal of Medicinal Chemistry 2003.0
Centrally acting serotonergic and dopaminergic agents. 1. Synthesis and structure-activity relationships of 2,3,3a,4,5,9b-hexahydro-1H-benz[e]indole derivatives
Journal of Medicinal Chemistry 1993.0