Synthesis, Biological Activity, and Molecular Modeling Studies of Selective 5-HT2C/2B Receptor Antagonists

Journal of Medicinal Chemistry
1996.0

Abstract

The synthesis and biological activity are reported for a series of analogues of the previously published indole urea 2 (SB-206553), designed to probe the 5-HT(2C) receptor binding site. Small molecule modeling studies have been used to define a region in space which is allowed at the 5-HT(2C) receptor but disallowed at the 5-HT(2A) receptor. In a complementary approach, docking of 2 into our model of the 5-HT(2C) receptor has allowed us to propose a novel primary binding interaction for this series of diaryl ureas, involving a potential double hydrogen-bonding interaction between the urea carbonyl oxygen of the ligand and two serine residues in the receptor. The difference of two valine residues in the 5-HT(2C) receptor for leucine residues in the 5-HT(2A) receptor is believed to account for the observed 5-HT(2C)/5-HT(2A) selectivity with 2.

Knowledge Graph

Similar Paper

Synthesis, Biological Activity, and Molecular Modeling Studies of Selective 5-HT<sub>2C/2B</sub> Receptor Antagonists
Journal of Medicinal Chemistry 1996.0
Novel and Selective 5-HT<sub>2C/2B</sub> Receptor Antagonists as Potential Anxiolytic Agents:  Synthesis, Quantitative Structure−Activity Relationships, and Molecular Modeling of Substituted 1-(3-Pyridylcarbamoyl)indolines
Journal of Medicinal Chemistry 1998.0
Development of a Receptor-Interaction Model for Serotonin 5-HT2 Receptor Antagonists. Predicting Selectivity with Respect to Dopamine D2 Receptors
Journal of Medicinal Chemistry 1994.0
A series of bisaryl imidazolidin-2-ones has shown to be selective and orally active 5-HT2C receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2005.0
5-Methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f]indole: A Novel 5-HT2C/5-HT2B Receptor Antagonist with Improved Affinity, Selectivity, and Oral Activity
Journal of Medicinal Chemistry 1995.0
Biarylcarbamoylindolines Are Novel and Selective 5-HT<sub>2C</sub> Receptor Inverse Agonists:  Identification of 5-Methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a Potential Antidepressant/Anxiolytic Agent
Journal of Medicinal Chemistry 2000.0
6-Chloro-5-methyl-1-[[2-[(2-methyl-3- pyridyl)oxy]-5-pyridyl]carbamoyl]indoline (SB-242084):  The First Selective and Brain Penetrant 5-HT<sub>2C</sub> Receptor Antagonist
Journal of Medicinal Chemistry 1997.0
Novel Agonists of 5HT<sub>2C</sub> Receptors. Synthesis and Biological Evaluation of Substituted 2-(Indol-1-yl)-1-methylethylamines and 2-(Indeno[1,2-b]pyrrol-1-yl)-1-methylethylamines. Improved Therapeutics for Obsessive Compulsive Disorder
Journal of Medicinal Chemistry 1997.0
Synthesis and structure–affinity relationships of novel small molecule natural product derivatives capable of discriminating between serotonin 5-HT1A, 5-HT2A, 5-HT2C receptor subtypes
Bioorganic &amp; Medicinal Chemistry 2010.0
Potent, Selective Tetrahydro-β-carboline Antagonists of the Serotonin 2B (5HT<sub>2B</sub>) Contractile Receptor in the Rat Stomach Fundus
Journal of Medicinal Chemistry 1996.0