Optimal Recognition of Neutral Endopeptidase and Angiotensin-Converting Enzyme Active Sites by Mercaptoacyldipeptides as a Means To Design Potent Dual Inhibitors

Journal of Medicinal Chemistry
1996.0

Abstract

An interesting approach for the treatment of congestive heart failure and chronic hypertension could be to avoid the formation of angiotensin II by inhibiting angiotensin converting enzyme (ACE) and to protect atrial natriuretic factor by blocking neutral endopeptidase 24.11 (NEP). This is supported by recent results obtained with potent dual inhibitors of the two zinc metallopeptidases, such as RB 105, HSCH2CH(CH3)PhCONHCH(CH3)COOH (Fournié-Zaluski et al. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 4072-4076), which reduces blood pressure in experimental models of hypertension, independently of the salt and renin angiotensin system status. In order to develop new dual inhibitors with improved affinities, long duration of action, and/or better bioavailabilities, various series of mercaptoacyldipeptides corresponding to the general formula HSCH(R1)CONHCH(R1')CON(R)CH(R2')COOH have been synthesized. The introduction of well-selected beta-branched chains in positions R1 and R1', associated with a tyrosine or a cyclic amino acid in the C-terminal position, led to potent dual inhibitors of NEP and ACE such as 21 [N-[(2S)-2-mercapto-3-methylbutanoyl]-Ile-Tyr] and 22 [N-[(2S)-2-mercapto-3-phenylpropanoyl]Ala-Pro] which have IC50 values in the nanomolar range for NEP and subnanomolar range for ACE. These compounds could have different modes of binding to the two peptidases. In NEP, the dual inhibitors seem to interact only with the S1' and S2' subsites, whereas additional interactions with the S1 binding subsite of ACE probably account for their subnanomolar inhibitory potencies for this enzyme. The localization of the Pro residue of 22 outside the NEP active site is supported by biochemical data using (Arg102,Glu)NEP and molecular modeling studies with thermolysin used as model of NEP. One hour after oral administration in mice of a single dose (2.7 x 10(-5) mol/kg), 21 inhibited 80% and 36% of kidney NEP and lung ACE, respectively, while 22 inhibited 40% of kidney NEP and 56% of lung ACE.

Knowledge Graph

Similar Paper

Optimal Recognition of Neutral Endopeptidase and Angiotensin-Converting Enzyme Active Sites by Mercaptoacyldipeptides as a Means To Design Potent Dual Inhibitors
Journal of Medicinal Chemistry 1996.0
Mercaptoacyl dipeptides as dual inhibitors of angiotensin-converting enzyme and neutral endopeptidase. Preliminary structure-activity studies
Bioorganic & Medicinal Chemistry Letters 1994.0
Mercaptoacyl Dipeptides as Orally Active Dual Inhibitors of Angiotensin-Converting Enzyme and Neutral Endopeptidase
Journal of Medicinal Chemistry 1996.0
New .alpha.-Thiol Dipeptide Dual Inhibitors of Angiotensin-I-Converting Enzyme and Neutral Endopeptidase EC 3.4.24.11
Journal of Medicinal Chemistry 1995.0
Lucilactaene, a New Cell Cycle Inhibitor in p53-Transfected Cancer Cells, Produced by a Fusarium sp.
The Journal of Antibiotics 2001.0
Toward an Optimal Joint Recognition of the S<sub>1</sub>‘ Subsites of Endothelin Converting Enzyme-1 (ECE-1), Angiotensin Converting Enzyme (ACE), and Neutral Endopeptidase (NEP)
Journal of Medicinal Chemistry 2002.0
4-Substituted proline derivatives that inhibit angiotensin converting enzyme and neutral endopeptidase 24.11.
Bioorganic &amp; Medicinal Chemistry Letters 1994.0
Dual inhibition of neutral endopeptidase and angiotensin-converting enzyme by N-phosphonomethyl and N-carboxyalkyl dipeptides
Bioorganic &amp; Medicinal Chemistry Letters 1994.0
Molecular Basis for Omapatrilat and Sampatrilat Binding to Neprilysin—Implications for Dual Inhibitor Design with Angiotensin-Converting Enzyme
Journal of Medicinal Chemistry 2020.0
Synthesis and enzymatic evaluation of novel partially fluorinated thiol dual ACE/NEP inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2009.0