Mutagenesis Reveals Structure−Activity Parallels between Human A2AAdenosine Receptors and Biogenic Amine G Protein-Coupled Receptors

Journal of Medicinal Chemistry
1997.0

Abstract

Structure-affinity relationships for ligand binding at the human A2A adenosine receptor have been probed using site-directed mutagenesis in the transmembrane helical domains (TMs). The mutant receptors were expressed in COS-7 cells and characterized by binding of the radioligands [3H]CGS21680, [3H]NECA, and [3H]XAC. Three residues, at positions essential for ligand binding in other G protein-coupled receptors, were individually mutated. The residue V(3.32) in the A2A receptor that is homologous to the essential aspartate residue of TM3 in the biogenic amine receptors, i.e., V84(3.32), may be substituted with L (present in the A3 receptor) but not with D (in biogenic amine receptors) or A. H250(6.52), homologous to the critical N507 of rat m3 muscarinic acetylcholine receptors, may be substituted with other aromatic residues or with N but not with A (Kim et al. J. Biol. Chem. 1995, 270, 13987-13997). H278(7.43), homologous to the covalent ligand anchor site in rhodopsin, may not be substituted with either A, K, or N. Both V84L(3.32) and H250N(6.52) mutant receptors were highly variable in their effect on ligand competition depending on the structural class of the ligand. Adenosine-5'-uronamide derivatives were more potent at the H250N(6.52) mutant receptor than at wild type receptors. Xanthines tended to be close in potency (H250N(6.52)) or less potent (V84L(3.32)) than at wild type receptors. The affinity of CGS21680 increased as the pH was lowered to 5.5 in both the wild type and H250N(6.52) mutant receptors. Thus, protonation of H250(6.52) is not involved in this pH dependence. These data are consistent with a molecular model predicting the proximity of bound agonist ligands to TM3, TM5, TM6, and TM7.

Knowledge Graph

Similar Paper

Mutagenesis Reveals Structure−Activity Parallels between Human A<sub>2A</sub>Adenosine Receptors and Biogenic Amine G Protein-Coupled Receptors
Journal of Medicinal Chemistry 1997.0
Neoceptor Concept Based on Molecular Complementarity in GPCRs:  A Mutant Adenosine A<sub>3</sub> Receptor with Selectively Enhanced Affinity for Amine-Modified Nucleosides
Journal of Medicinal Chemistry 2001.0
Evaluation of Molecular Modeling of Agonist Binding in Light of the Crystallographic Structure of an Agonist-Bound A<sub>2A</sub>Adenosine Receptor
Journal of Medicinal Chemistry 2012.0
Structural Determinants of A<sub>3</sub> Adenosine Receptor Activation:  Nucleoside Ligands at the Agonist/Antagonist Boundary
Journal of Medicinal Chemistry 2002.0
Molecular Modeling and Molecular Dynamics Simulation of the Human A<sub>2B</sub>Adenosine Receptor. The Study of the Possible Binding Modes of the A<sub>2B</sub>Receptor Antagonists
Journal of Medicinal Chemistry 2005.0
5′-Substituted Amiloride Derivatives as Allosteric Modulators Binding in the Sodium Ion Pocket of the Adenosine A<sub>2A</sub>Receptor
Journal of Medicinal Chemistry 2016.0
Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT<sub>2A</sub>Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation
Journal of Medicinal Chemistry 2008.0
Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y<sub>2</sub>Receptor
Journal of Medicinal Chemistry 2017.0
Structural basis of the selectivity of the β2-adrenergic receptor for fluorinated catecholamines
Bioorganic &amp; Medicinal Chemistry 2009.0
Structure−Activity Relationships of Adenine and Deazaadenine Derivatives as Ligands for Adenine Receptors, a New Purinergic Receptor Family
Journal of Medicinal Chemistry 2009.0