Structure−Activity Relationships of 2‘-Deoxy-2‘,2‘-difluoro-l-erythro-pentofuranosyl Nucleosides

Journal of Medicinal Chemistry
1997.0

Abstract

Following the recent discoveries that some L-nucleosides are more or equal potent than their D-counterparts, we synthesized 2'-deoxy-2',2'-difluoro-L-erythro-pentofuranosyl nucleosides as potential antiviral agents. The target compounds were synthesized via the key intermediates 7a or 7b from L-gulono gamma-lactone. Compound 2 was oxidatively cleaved and coupled with ethyl bromodifluoroacetate in the presence of activated zinc under Reformatsky conditions to obtain a diasteomeric mixture of 4(R) and 4(S), in a 4:1 ratio. The major 4(R) isomer was cyclized and treated appropriately to obtain the mesylate 8a or 8b, which was condensed with various silyl-protected pyrimidines. Condensation of the alcohol 7a or 7b with 6-chloropurine under Mitsunobu conditions afforded the 6-chlorpurine analogs 53a or 53b and 54a or 54b. Further treatment of the compounds 53a, 54a and 53b, 54b afforded the inosine and adenine derivatives 57-60, respectively. The condensation of 2-amino-6-chloropurine with compound 8a and subsequent treatment with 2-mercaptoethanol/sodium methoxide afforded the guanine analogs 63 and 64. All of the synthesized nucleosides 31-52, 57-60, 63, and 64 were evaluated for antiviral activity and for cellular toxicity. Adenine derivative 57 showed a moderate activity against HIV-1 in PBM cells (3.4 microM). None of the other compounds showed any significant activities against HIV-1, HBV, HSV-1, HSV-2, and toxicity in Vero, CEM, and PBM cell lines up to 100 microM. The X-ray structure of the 5-iodocytosine analog showed a 2'-exo/3'-endo conformation for the carbohydrate moiety, which is different from those of the biologically active compounds (-)-FTC and L-FMAU.

Knowledge Graph

Similar Paper

Structure−Activity Relationships of 2‘-Deoxy-2‘,2‘-difluoro-<scp>l</scp>-erythro-pentofuranosyl Nucleosides
Journal of Medicinal Chemistry 1997.0
Synthesis and anti-HIV activities of 2′-deoxy-2′,2″-difluoro-β-L-ribofuranosyl-pyrimidine and -purine nucleosides
Bioorganic &amp; Medicinal Chemistry Letters 1995.0
Synthesis and Anti-HIV and Anti-HBV Activities of 2‘-Fluoro-2‘,3‘-unsaturated <scp>l</scp>-Nucleosides
Journal of Medicinal Chemistry 1999.0
Synthesis, evaluation of anti-HIV-1 and anti-HCV activity of novel 2′,3′-dideoxy-2′,2′-difluoro-4′-azanucleosides
Bioorganic &amp; Medicinal Chemistry 2012.0
Synthesis and antiviral activity of monofluoro and difluoro analogs of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1)
Journal of Medicinal Chemistry 1990.0
L-.beta.-(2S,4S)- and L-.alpha.-(2S,4R)-dioxolanyl nucleosides as potential anti-HIV agents: asymmetric synthesis and structure-activity relationships
Journal of Medicinal Chemistry 1993.0
Structure−Activity Relationships of 2‘-Fluoro-2‘,3‘-unsaturated <scp>d</scp>-Nucleosides as Anti-HIV-1 Agents
Journal of Medicinal Chemistry 2002.0
Enantiomeric Synthesis of <scp>d</scp>- and <scp>l</scp>-Cyclopentenyl Nucleosides and Their Antiviral Activity Against HIV and West Nile Virus
Journal of Medicinal Chemistry 2001.0
Stereoselective Synthesis and Antiviral Activity of <scp>d</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluoro-4‘-thionucleosides
Journal of Medicinal Chemistry 2002.0
Synthesis of new (.+-.)-3,5-dihydroxypentyl nucleoside analogs from 1-amino-5-(benzyloxy)pentan-3-ol and their antiviral evaluation
Journal of Medicinal Chemistry 1990.0