Probes for Narcotic Receptor Mediated Phenomena. 23. Synthesis, Opioid Receptor Binding, and Bioassay of the Highly Selective δ Agonist (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]- N,N-diethylbenzamide (SNC 80) and Related Novel Nonpeptide δ Opioid Receptor Ligands

Journal of Medicinal Chemistry
1997.0

Abstract

The highly selective delta (delta) opioid receptor agonist SNC 80 [(+)-4- [(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N ,N- diethylbenzamide, (+)-21] and novel optically pure derivatives were synthesized from the enantiomers of 1-allyl-trans-2,5-dimethylpiperazine (2). The piperazine (+/-)-2 was synthesized, and its enantiomers were obtained on a multigram scale in > 99% optical purity by optical resolution of the racemate with the camphoric acids. The absolute configuration of (+)-2 was determined to be 2S,5R by X-ray analysis of the salt with (+)-camphoric acid. Since the chirality of the starting material was known, and the relative configuration of compounds (-)-21, (-)-22, and (+)-23 were obtained by single-crystal X-ray analysis, the assignment of the absolute stereochemistry of the entire series could be made. Radioreceptor binding studies in rat brain preparations showed that methyl ethers (+)-21 (SNC 80) and (-)-25 exhibited strong selectivity for rat delta receptors with low nanomolar affinity to delta receptors and only micromolar affinity for rat mu (mu) opioid receptors. Compounds (-)-21, (-)-22, and (-)-23 showed micromolar affinities for delta opioid receptors. The unsubstituted derivative (+)-22 and the fluorinated derivative (-)-27 showed > 2659- and > 2105-fold delta/mu binding selectivity, respectively. The latter derivatives are the most selective ligands described in the new series. Studies with some of the compounds described in the isolated mouse vas deferens and guinea pig ileum bioassays revealed that all were agonists with different degrees of selectivity for the delta opioid receptor. These data show that (+)-21 and (+)-22 are potent delta receptor agonists and suggest that these compounds will be valuable tools for further study of the delta opioid receptor at the molecular level, including its function and role in analgesia and drug abuse.

Knowledge Graph

Similar Paper

Probes for Narcotic Receptor Mediated Phenomena. 23. Synthesis, Opioid Receptor Binding, and Bioassay of the Highly Selective δ Agonist (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]- N,N-diethylbenzamide (SNC 80) and Related Novel Nonpeptide δ Opioid Receptor Ligands
Journal of Medicinal Chemistry 1997.0
Probes for Narcotic Receptor Mediated Phenomena. 19. Synthesis of (+)-4-[(.alpha.R)-.alpha.-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80): A Highly Selective, Nonpeptide .delta. Opioid Receptor Agonist
Journal of Medicinal Chemistry 1994.0
Optically pure (−)-4-[(N-allyl-3-methyl-4-piperidinyl)phenyl-amino]-N,N-diethylbenzamide displays selective binding and full agonist activity for the δ opioid receptor
Bioorganic & Medicinal Chemistry Letters 1999.0
N,N-Diethyl-4-[(3-hydroxyphenyl)(piperidin-4-yl)amino] benzamide derivatives: The development of diaryl amino piperidines as potent δ opioid receptor agonists with in vivo anti-nociceptive activity in rodent models
Bioorganic & Medicinal Chemistry Letters 2009.0
(±)-4-[(N-allyl-cis-3-methyl-4-piperidinyl)phenylamino]-N,N-diethylbenzamide displays selective binding for the delta opioid receptor
Bioorganic & Medicinal Chemistry Letters 1999.0
Synthesis of quinolinomorphinan-4-ol derivatives as δ opioid receptor agonists
Bioorganic & Medicinal Chemistry 2012.0
Design and synthesis of novel delta opioid receptor agonists and their pharmacologies
Bioorganic & Medicinal Chemistry Letters 2009.0
Probes for Narcotic Receptor-Mediated Phenomena. 21. Novel Derivatives of 3-(1,2,3,4,5,11-Hexahydro-3-methyl-2,6-methano-6H-azocino[4,5-b]indol-6-yl)- phenols with Improved δ Opioid Receptor Selectivity
Journal of Medicinal Chemistry 1996.0
Factors Influencing Agonist Potency and Selectivity for the Opioid δ Receptor Are Revealed in Structure−Activity Relationship Studies of the 4-[(N-Substituted-4-piperidinyl)arylamino]-N,N-diethylbenzamides
Journal of Medicinal Chemistry 2001.0
Piperazinyl benzamidines: Synthesis and affinity for the delta opioid receptor
Bioorganic & Medicinal Chemistry Letters 2001.0