Synthesis, Rotamer Orientation, and Calcium Channel Modulation Activities of Alkyl and 2-Phenethyl 1,4-Dihydro-2,6-dimethyl-3-nitro-4-(3- or 6-substituted-2-pyridyl)-5-pyridinecarboxylates

Journal of Medicinal Chemistry
1998.0

Abstract

A group of racemic alkyl and 2-phenethyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(3- or 6-substituted-2-pyridyl)-5-pyridinecarboxylates (13a-q) was prepared using a modified Hantzsch reaction that involved the condensation of a 3- or 6-substituted-2-pyridinecarboxaldehyde (7a-j) with an alkyl or 2-phenethyl 3-aminocrotonate (11a-d) and nitroacetone (12). Nuclear Overhauser (NOE) studies indicated there is a significant rotamer fraction in solution where the pyridyl nitrogen is oriented above the 1,4-dihydropyridine ring, irrespective of whether a substituent is located at the 3- or 6-position. A potential H-bonding interaction between the pyridyl nitrogen free electron pair and the suitably positioned 1,4-dihydropyridine NH moiety may stablize this rotamer orientation. In vitro calcium channel antagonist and agonist activities were determined using guinea pig ileum longitudinal smooth muscle (GPILSM) and guinea pig left atrium (GPLA) assays, respectively. Compounds having an i-Pr ester substituent acted as dual cardioselective calcium channel agonists (GPLA)/smooth muscle-selective calcium channel antagonists (GPILSM), except for the C-4 3-nitro-2-pyridyl compound which exhibited an antagonist effect on both GPLA and GPILSM. In contrast, the compounds with a phenethyl ester group, which exhibited antagonist activity (IC50 = 10(-5)-10(-7) M range) on GPILSM, were devoid of cardiac agonist activity on GPLA. Structure-activity relationships showing the effect of a substituent (Me, CF3, Cl, NO2, Ph) at the 3- or 6-position of a C-4 2-pyridyl moiety and a variety of ester substituents (Me, Et, i-Pr, PhCH2CH2-) upon calcium channel modulation are described. Compounds possessing a 3- or 6-substituted-2-pyridyl moiety, in conjuction with an i-Pr ester substituent, are novel 1,4-dihydropyridine calcium channel modulators that offer a new drug design approach directed to the treatment of congestive heart failure and may also be useful as probes to study the structure-function relationships of calcium channels.

Knowledge Graph

Similar Paper

Synthesis, Rotamer Orientation, and Calcium Channel Modulation Activities of Alkyl and 2-Phenethyl 1,4-Dihydro-2,6-dimethyl-3-nitro-4-(3- or 6-substituted-2-pyridyl)-5-pyridinecarboxylates
Journal of Medicinal Chemistry 1998.0
Synthesis and Calcium Channel-Modulating Effects of Alkyl (or Cycloalkyl) 1,4-Dihydro-2,6-dimethyl-3-nitro-4-pyridyl-5-pyridinecarboxylate Racemates and Enantiomers
Journal of Medicinal Chemistry 1998.0
Synthesis and calcium channel antagonist activity of dialkyl 1,4-dihydro-2,6-dimethyl-4-(pyridinyl)-3,5-pyridinedicarboxylates
Journal of Medicinal Chemistry 1986.0
Syntheses, Calcium Channel Agonist−Antagonist Modulation Activities, and Nitric Oxide Release Studies of Nitrooxyalkyl 1,4-Dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate Racemates, Enantiomers, and Diastereomers
Journal of Medicinal Chemistry 2004.0
Synthesis and calcium channel antagonist activity of dialkyl 4-(dihydropyridinyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylates
Journal of Medicinal Chemistry 1987.0
Crystal structures and pharmacological activity of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4-(unsubstituted, 3-methyl-, 4-methyl-, 3-nitro-, 4-nitro-, and 2,4-dinitrophenyl)-1,4-dihydropyridine
Journal of Medicinal Chemistry 1982.0
Crystal structures of calcium channel antagonists: 2,6-dimethyl-3,5-dicarbomethoxy-4-[2-nitro-, 3-cyano-, 4-(dimethylamino)-, and 2,3,4,5,6-pentafluorophenyl]-1,4-dihydropyridine
Journal of Medicinal Chemistry 1980.0
Discovery and evaluation of selective N-type calcium channel blockers: 6-Unsubstituted-1,4-dihydropyridine-5-carboxylic acid derivatives
Bioorganic & Medicinal Chemistry Letters 2012.0
Synthesis and calcium channel antagonist activity of novel 1,4-dihydropyridine derivatives possessing 4-pyrone moieties
Medicinal Chemistry Research 2012.0
Calcium channel blocking and positive inotropic activities of ethyl 5-cyano-1,4-dihydro-6-methyl-2-[(phenylsulfonyl)methyl]-4-aryl-3-pyridinecarboxylate and analogs. Synthesis and structure-activity relationships
Journal of Medicinal Chemistry 1991.0