Antitumor Agents. 185. Synthesis and Biological Evaluation of Tridemethylthiocolchicine Analogues as Novel Topoisomerase II Inhibitors

Journal of Medicinal Chemistry
1998.0

Abstract

Several 1,2,3-tridemethyldeacetylthiocolchicine derivatives have been synthesized and evaluated for cytotoxic activity against various human tumor cell lines and for their inhibitory effects on DNA topoisomerases in vitro. Exhaustive demethylation of thiocolchicine analogues completely changes their biological profiles. Instead of displaying antitubulin activity, most target compounds inhibited topoisomerase II activity. Only compounds with a larger side chain, such as 15a, 23a, and 24a, did not interfere with topoisomerase II enzymatic functions. The cytotoxicity of target compounds was reduced by 3 orders of magnitude compared to that of colchicine in most cell lines. The hydrophilicity of phenolic compounds might prevent drug passage through the cell plasma membrane and, thus, be responsible for the relatively weak cytotoxicity. To test this hypothesis, 27-30 were prepared from 16a by protecting all hydroxy groups with esters with an aim to facilitate drug transportation. In vitro cytotoxicity assays indicated that 27 was more potent than its parent compound in all tested tumor cell lines and showed tissue selective cytotoxicity with a significant inhibitory effect against KB cells (IC50 = 2.7 microg/mL). Therefore, we propose that 27 acts as a prodrug, liberating 16a to exert its antitopoisomerase activity and, finally, to cause cell death.

Knowledge Graph

Similar Paper

Antitumor Agents. 185. Synthesis and Biological Evaluation of Tridemethylthiocolchicine Analogues as Novel Topoisomerase II Inhibitors
Journal of Medicinal Chemistry 1998.0
Antitumor agents 273. Design and synthesis of N-alkyl-thiocolchicinoids as potential antitumor agents
Bioorganic & Medicinal Chemistry Letters 2010.0
Synthesis, antitumor activity, and structure–activity relationship study of trihydroxylated 2,4,6-triphenyl pyridines as potent and selective topoisomerase II inhibitors
European Journal of Medicinal Chemistry 2014.0
Design, synthesis, and antitumor evaluation of 2,4,6-triaryl pyridines containing chlorophenyl and phenolic moiety
European Journal of Medicinal Chemistry 2012.0
Triphenylethylene analogues: Design, synthesis and evaluation of antitumor activity and topoisomerase inhibitors
European Journal of Medicinal Chemistry 2020.0
Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents
Bioorganic & Medicinal Chemistry 2015.0
Antitumor Agents. 166. Synthesis and Biological Evaluation of 5,6,7,8-Substituted-2-phenylthiochromen-4-ones
Journal of Medicinal Chemistry 1996.0
Antitumor agents. 139. Synthesis and biological evaluation of thiocolchicine analogs 5,6-dihydro-6(S)-acyloxy)- and 5,6-dihydro-6(S)-[(aroyloxy)methyl]-1,2,3-trimethoxy-9-(methylthio)-8H-cyclohepta[a]naphthalen-8-ones as novel cytotoxic and antimitotic agents
Journal of Medicinal Chemistry 1993.0
Topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines
Bioorganic & Medicinal Chemistry 2015.0
Antitumor agents. 141. Synthesis and biological evaluation of novel thiocolchicine analogs: N-acyl, N-aroyl-, and N-(substituted benzyl)deacetylthiocolchicines as potent cytotoxic and antimitotic compounds
Journal of Medicinal Chemistry 1993.0