Heteroaryl Analogues of AMPA. 2. Synthesis, Absolute Stereochemistry, Photochemistry, and Structure−Activity Relationships

Journal of Medicinal Chemistry
1998.0

Abstract

We have previously shown that (S)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(S)-APPA, 2] is a weak agonist at (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors, specifically activated by (S)-AMPA (1), whereas (S)-2-amino-3-[3-hydroxy-5-(2-pyridyl)-4-isoxazolyl]propionic acid [(S)-2-Py-AMPA, 5] and (RS)-2-amino-3-[3-hydroxy-5-(2-thiazolyl)-4-isoxazolyl]propionic acid (4) are potent AMPA agonists. On the other hand, (R)-APPA (3) and (R)-2-Py-AMPA (6) have been shown to be weak AMPA antagonists. We now report the synthesis of 2-Py-AMPA (7a) and the isomeric compounds 3-Py-AMPA (7b) and 4-Py-AMPA (7c) as well as the 7a analogues, (RS)-2-amino-3-[3-hydroxy-5-(6-methyl-2-pyridyl)-4-isoxazolyl]p ropion ic acid (7d) and (RS)-2-amino-3-[3-hydroxy-5-(2-quinolinyl)-4-isoxazolyl]propionic acid (7e). Furthermore, (RS)-2-amino-3-[3-hydroxy-5-(2-furyl)-4-isoxazolyl]propionic acid (2-Fu-AMPA, 7f) and its 5-bromo-2-furyl derivative (7g) were synthesized, and (S)-2-Fu-AMPA (8) and (R)-2-Fu-AMPA (9) were prepared by semipreparative chiral HPLC resolution of 7f. HPLC analyses and circular dichroism spectroscopy indicated the absolute stereochemistry of 8 and 9 to be S and R, respectively. This was confirmed by an X-ray crystallographic analysis of 9.HCl. In receptor binding (IC50 values) and rat cortical wedge electrophysiological (EC50 values) studies, 7c (IC50 = 5.5 +/- 0.6 microM; EC50 = 96 +/- 5 microM) was shown to be markedly weaker than 7a (IC50 = 0.57 +/- 0.16 microM; EC50 = 7.4 +/- 0.2 microM) as an AMPA agonist, whereas 7b,d,e were inactive. The very potent AMPA agonist effect of 7f (IC50 = 0.15 +/- 0.03 microM; EC50 = 1.7 +/- 0. 2 microM) was shown to reside exclusively in 8 (IC50 = 0.11 +/- 0.01 microM; EC50 = 0.71 +/- 0.11 microM), whereas 9 did not interact significantly with AMPA receptors, either as an agonist or as an antagonist. 8 was shown to be photochemically active and is a potential photoaffinity label for the recognition site of the AMPA receptors. Compound 7g turned out to be a very weak AMPA receptor agonist (IC50 = 12 +/- 0.7 microM; EC50 = 160 +/- 15 microM). None of these new compounds showed detectable effects at N-methyl-d-aspartic acid (NMDA) or kainic acid receptors in vitro. The present studies have emphasized that the presence of a heteroatom in the 2-position of the heteroaryl 5-substituent greatly facilitates AMPA receptor agonist activity.

Knowledge Graph

Similar Paper

Heteroaryl Analogues of AMPA. 2. Synthesis, Absolute Stereochemistry, Photochemistry, and Structure−Activity Relationships
Journal of Medicinal Chemistry 1998.0
Resolution, Absolute Stereochemistry, and Pharmacology of the S-(+)- and R-(-)-Isomers of the Apparent Partial AMPA Receptor Agonist (R,S)-2-Amino-3-(3-hydroxy-5-phenylisoxazol-4-yl)propionic Acid [(R,S)-APPA]
Journal of Medicinal Chemistry 1994.0
Heterocyclic excitatory amino acids. Synthesis and biological activity of novel analogs of AMPA
Journal of Medicinal Chemistry 1992.0
Synthesis and Structure-Activity Studies on Acidic Amino Acids and Related Diacids as NMDA Receptor Ligands
Journal of Medicinal Chemistry 1994.0
Excitatory Amino Acid Receptor Ligands:  Resolution, Absolute Stereochemistry, and Enantiopharmacology of 2-Amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic Acid
Journal of Medicinal Chemistry 1998.0
Synthesis and Pharmacology of Highly Selective Carboxy and Phosphono Isoxazole Amino Acid AMPA Receptor Antagonists
Journal of Medicinal Chemistry 1996.0
AMPA Receptor Agonists:  Synthesis, Protolytic Properties, and Pharmacology of 3-Isothiazolol Bioisosteres of Glutamic Acid
Journal of Medicinal Chemistry 1997.0
Tweaking Subtype Selectivity and Agonist Efficacy at (S)-2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) Receptors in a Small Series of BnTetAMPA Analogues
Journal of Medicinal Chemistry 2016.0
Novel class of amino acid antagonists at non-N-methyl-D-aspartic acid excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology, and neuroprotection
Journal of Medicinal Chemistry 1991.0
Excitatory amino acid receptor atagonists: synthesis and pharmacology of 3-(carboxymethoxy)isoxazoles derived from AMPA
Bioorganic & Medicinal Chemistry Letters 1993.0