N‘-Phenylindol-3-ylglyoxylohydrazide Derivatives:  Synthesis, Structure−Activity Relationships, Molecular Modeling Studies, and Pharmacological Action on Brain Benzodiazepine Receptors

Journal of Medicinal Chemistry
1998.0

Abstract

A series of N'-phenylindol-3-ylglyoxylohydrazides, isosters of the N-benzylindol-3-ylglyoxylamide derivatives previously described by us, were synthesized and tested for their ability to displace [3H]Ro 15-1788 from bovine brain membranes. These compounds were designed with the aim of obtaining products which could exert an in vivo activity, thanks to a higher hydrosolubility and consequently a better bioavailability. Affinity was restricted to the derivatives unsubstituted in the 5 position of the indole nucleus (1, 6, 9, 12, 15, 18, 23, and 26), with Ki values ranging from 510 to 11 nM. The most active compounds (6, 9, 23, and 29) proved to be effective in antagonizing pentylenetetrazole-induced seizures. Molecular modeling studies were performed to rationalize the lack of affinity of hydrazides with a chloro or a nitro group in the 5 position of the indole nucleus. It was hypothesized that the conformational preference of the hydrazide side chain, characterized by a gauche disposition of lone pairs and substituents about the N-N bond, prevents all hydrazides from binding to the receptor similarly to other classes of indole analogues previously investigated. The potency of 5-H hydrazides was attributed to a binding mode which is not feasible for 5-Cl and 5-NO2 counterparts. This theoretical model of ligand-receptor interaction permitted a more stringent interpretation of structure-affinity relationships of hydrazides and of recently described benzylamide derivatives (Da Settimo et al. J. Med. Chem. 1996, 39, 5083-5091).

Knowledge Graph

Similar Paper

N‘-Phenylindol-3-ylglyoxylohydrazide Derivatives:  Synthesis, Structure−Activity Relationships, Molecular Modeling Studies, and Pharmacological Action on Brain Benzodiazepine Receptors
Journal of Medicinal Chemistry 1998.0
Specific inhibition of benzodiazepine receptor binding by some N-(indol-3-ylglyoxylyl)amino acid derivatives
Journal of Medicinal Chemistry 1985.0
3-Aryl-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones:  Tricyclic Heteroaromatic Derivatives as a New Class of Benzodiazepine Receptor Ligands
Journal of Medicinal Chemistry 2000.0
Benzodiazepine receptor affinity and interaction of some N-(indol-3-ylglyoxylyl)amine derivatives
Journal of Medicinal Chemistry 1992.0
Refinement of the Benzodiazepine Receptor Site Topology by Structure−Activity Relationships of NewN-(Heteroarylmethyl)indol-3-ylglyoxylamides
Journal of Medicinal Chemistry 2006.0
Synthesis, receptor affinity and effect on pentylenetetrazole-induced seizure threshold of novel benzodiazepine analogues: 3-Substituted 5-(2-phenoxybenzyl)-4H-1,2,4-triazoles and 2-amino-5-(phenoxybenzyl)-1,3,4-oxadiazoles
Bioorganic & Medicinal Chemistry 2014.0
The discovery of a novel and potent benzodiazepine receptor pharmacophore
Bioorganic & Medicinal Chemistry Letters 1995.0
Synthesis of 7,12-dihydropyrido[3,4-b:5,4-b']diindoles. A novel class of rigid, planar benzodiazepine receptor ligands
Journal of Medicinal Chemistry 1987.0
Synthesis, in Vivo Evaluation, and Molecular Modeling Studies of New Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide Derivatives. Identification of a Bifunctional Hydrogen Bond Area Related to the Inverse Agonism
Journal of Medicinal Chemistry 2009.0
Novel benzodiazepine receptor partial agonists: oxadiazolylimidazobenzodiazepines
Journal of Medicinal Chemistry 1989.0