Mapping the Melatonin Receptor. 5. Melatonin Agonists and Antagonists Derived from Tetrahydrocyclopent[b]indoles, Tetrahydrocarbazoles and Hexahydrocyclohept[b]indoles

Journal of Medicinal Chemistry
1998.0

Abstract

Tetrahydrocyclopent[b]indoles, tetrahydrocarbazoles, and hexahydrocyclohept[b]indoles have been prepared as melatonin analogues to investigate the nature of the binding site of the melatonin receptor. The affinity of analogues was compared in a radioligand binding assay using chicken brain membranes and agonist and antagonist potency measured in clonal Xenopus laevis melanophore cells. Comparison of the N-acyl-3-amino-6-methoxytetrahydrocarbazoles (2) with N-acyl-4-(aminomethyl)-6-methoxy-9-methyltetrahydrocarbazoles (9) showed that the latter have much higher binding affinities for the chicken brain receptor. Comparison of N-acyl-1-(aminomethyl)-7-methoxy-4-methyltetrahydrocyclopent[b]ind oles (10), 6-methoxytetrahydrocarbazoles (9), and N-acyl-10-(aminomethyl)-2-methoxy-5-methylhexahydrocyclohept[b]ind oles (11) showed that the tetrahydrocarbazoles had the highest binding affinity with the cyclohept[b]indoles and the cyclopent[b]indoles having rather lower affinities. All of these observations are in agreement with our postulated model of melatonin orientation at the binding pocket in which the 3-amidoethane side chain is in a conformation close to the 5-methoxyl group, as is shown in the X-ray crystallographic structure of 9m and in the energy-minimized computed structures. Separation of the enantiomers of members from each of these three systems was accomplished by chiral HPLC. It was found that in all cases the (-)-enantiomer had a higher binding affinity than the (+)-enantiomer. An X-ray crystallographic analysis of the two enantiomers of 9a showed that the (+)-enantiomer had the (R) absolute stereochemistry. Since the sign of the Cotton curves, determined from circular dichroism studies, was the same for all (+)-enantiomers, it is assumed that the absolute stereochemistry at these centers is identical. In the Xenopus melanophore assay, the tetrahydrocarbazoles 2 (R = H) were mainly weak antagonists, while those with R = OMe were agonists. The biological behavior of the tetrahydrocarbazoles 9 (R = H) depended on R1, some being agonists and some antagonists, whereas those with R = OMe were generally agonists. Variation of the R and R1 groups in compounds of type 9 produced both agonists and antagonists. The tetrahydrocylopentaindoles 10 had similar biological properties to the corresponding analogues of 9, but the hexahydrocycloheptaindoles 11 showed a much greater propensity to be antagonists. In all cases the (S)-enantiomers were found to be more potent agonists than the (R)-enantiomers.

Knowledge Graph

Similar Paper

Mapping the Melatonin Receptor. 5. Melatonin Agonists and Antagonists Derived from Tetrahydrocyclopent[b]indoles, Tetrahydrocarbazoles and Hexahydrocyclohept[b]indoles
Journal of Medicinal Chemistry 1998.0
Mapping the Melatonin Receptor. 6. Melatonin Agonists and Antagonists Derived from 6H-Isoindolo[2,1-a]indoles, 5,6-Dihydroindolo[2,1-a]isoquinolines, and 6,7-Dihydro-5H-benzo[c]azepino[2,1-a]indoles
Journal of Medicinal Chemistry 2000.0
Mapping the Melatonin Receptor. 3. Design and Synthesis of Melatonin Agonists and Antagonists Derived from 2-Phenyltryptamines
Journal of Medicinal Chemistry 1995.0
Mapping the melatonin receptor. 2. synthesis and biological activity of indole derived melatonin analogues with restricted conformations of the C-3 amidoethane side chain
Bioorganic & Medicinal Chemistry Letters 1994.0
1-(2-Alkanamidoethyl)-6-methoxyindole Derivatives:  A New Class of Potent Indole Melatonin Analogues
Journal of Medicinal Chemistry 1997.0
Conformationally Restrained Melatonin Analogues:  Synthesis, Binding Affinity for the Melatonin Receptor, Evaluation of the Biological Activity, and Molecular Modeling Study
Journal of Medicinal Chemistry 1997.0
2-[(2,3-Dihydro-1H-indol-1-yl)methyl]melatonin Analogues: A Novel Class of MT<sub>2</sub>-Selective Melatonin Receptor Antagonists
Journal of Medicinal Chemistry 2009.0
Synthesis of a Novel Series of Benzocycloalkene Derivatives as Melatonin Receptor Agonists
Journal of Medicinal Chemistry 2002.0
Design and synthesis of 1-(2-alkanamidoethyl)-6-methoxy-7-azaindole derivatives as potent melatonin agonists
Bioorganic &amp; Medicinal Chemistry Letters 2011.0
2-Amido-8-methoxytetralins: A series of nonindolic melatonin-like agents
Journal of Medicinal Chemistry 1993.0