The Opioid μ Agonist/δ Antagonist DIPP-NH2[Ψ] Produces a Potent Analgesic Effect, No Physical Dependence, and Less Tolerance than Morphine in Rats

Journal of Medicinal Chemistry
1999.0

Abstract

Opioid compounds with mixed mu agonist/delta antagonist properties are expected to be analgesics with low propensity to produce tolerance and dependence. In an effort to strengthen the mu agonist component of the mixed mu agonist/delta antagonist H-Tyr-Tic-Phe-Phe-NH(2) (TIPP-NH(2)), analogues containing structurally modified tyrosine residues in place of Tyr(1) were synthesized. Among the prepared compounds, H-Dmt-Tic-Phe-Phe-NH(2) (DIPP-NH(2); Dmt = 2',6'-dimethyltyrosine) and H-Dmt-TicPsi[CH(2)NH]Phe-Phe-NH(2) (DIPP-NH(2)[Psi]) retained a mixed mu agonist/delta antagonist profile, as determined in the guinea pig ileum and mouse vas deferens assays, whereas H-Tmt-Tic-Phe-Phe-NH(2) (Tmt = N,2',6'-trimethyltyrosine) was a partial mu agonist/delta antagonist and H-Tmt-TicPsi[CH(2)NH]Phe-Phe-NH(2) was a mu antagonist/delta antagonist. DIPP-NH(2)[Psi] showed binding affinities in the subnanomolar range for both mu and delta receptors in the rat brain membrane binding assays, thus representing the first example of a balanced mu agonist/delta antagonist with high potency. In the rat tail flick test, DIPP-NH(2)[Psi] given icv produced a potent analgesic effect (ED(50) = 0.04 microg), being about 3 times more potent than morphine (ED(50) = 0.11 microg). It produced less acute tolerance than morphine but still a certain level of chronic tolerance. Unlike morphine, DIPP-NH(2)[Psi] produced no physical dependence whatsoever upon chronic administration at high doses (up to 4.5 microg/h) over a 7-day period. In conclusion, DIPP-NH(2)[Psi] fulfills to a large extent the expectations based on the mixed mu agonist/delta antagonist concept with regard to analgesic activity and the development of tolerance and dependence.

Knowledge Graph

Similar Paper

The Opioid μ Agonist/δ Antagonist DIPP-NH<sub>2</sub>[Ψ] Produces a Potent Analgesic Effect, No Physical Dependence, and Less Tolerance than Morphine in Rats
Journal of Medicinal Chemistry 1999.0
N-terminal guanidinylation of TIPP (Tyr-Tic-Phe-Phe) peptides results in major changes of the opioid activity profile
Bioorganic &amp; Medicinal Chemistry Letters 2013.0
TIPP[.psi.]: a highly potent and stable pseudopeptide .delta. opioid receptor antagonist with extraordinary .delta. selectivity
Journal of Medicinal Chemistry 1993.0
Novel TIPP (H-Tyr-Tic-Phe-Phe-OH) analogues displaying a wide range of efficacies at the δ opioid receptor. Discovery of two highly potent and selective δ opioid agonists
Bioorganic &amp; Medicinal Chemistry Letters 2012.0
Assessment of substitution in the second pharmacophore of Dmt-Tic analogues
Bioorganic &amp; Medicinal Chemistry Letters 2000.0
14-Alkoxy- and 14-Acyloxypyridomorphinans: μ Agonist/δ Antagonist Opioid Analgesics with Diminished Tolerance and Dependence Side Effects
Journal of Medicinal Chemistry 2012.0
Endomorphin analogues with mixed μ-opioid (MOP) receptor agonism/δ-opioid (DOP) receptor antagonism and lacking β-arrestin2 recruitment activity
Bioorganic &amp; Medicinal Chemistry 2014.0
Synthesis and Structure–Activity Relationships of 5′-Aryl-14-alkoxypyridomorphinans: Identification of a μ Opioid Receptor Agonist/δ Opioid Receptor Antagonist Ligand with Systemic Antinociceptive Activity and Diminished Opioid Side Effects
Journal of Medicinal Chemistry 2020.0
Evaluation of the Dmt−Tic Pharmacophore:  Conversion of a Potent δ-Opioid Receptor Antagonist into a Potent δ Agonist and Ligands with Mixed Properties
Journal of Medicinal Chemistry 2002.0
Identification of Opioid Ligands Possessing Mixed μ Agonist/δ Antagonist Activity among Pyridomorphinans Derived from Naloxone, Oxymorphone, and Hydropmorphone
Journal of Medicinal Chemistry 2004.0