Three-Dimensional Quantitative Structure−Activity Relationship Study on Cyclic Urea Derivatives as HIV-1 Protease Inhibitors:  Application of Comparative Molecular Field Analysis

Journal of Medicinal Chemistry
1999.0

Abstract

Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been developed using comparative molecular field analysis (CoMFA) on a large data set (118 compounds) of diverse cyclic urea derivatives as protease inhibitors against the human immunodeficiency virus type 1 (HIV-1). X-ray crystal structures of HIV-1 protease bound with this class of inhibitors were used to derive the most probable bioactive conformations of the inhibitors. The enzyme active site was used as a constraint to limit the number of possible conformations that are sterically accessible. The test sets have been created keeping in mind structural diversity as well as the uniform simple statistical criteria (mean, standard deviation, high and low values) of the protease inhibitory activities of the molecules compared to the training sets. Multiple predictive models have been developed with the training sets (93 compounds in each set) and validated with the corresponding test sets (25 compounds in each set). All the models yielded high predictive correlation coefficients (q2 from 0.699 to 0.727), substantially high fitted correlation coefficients (r2 from 0.965 to 0.973), and reasonably low standard errors of estimates (S from 0. 239 to 0.265). The steric and electrostatic effects have approximately equal contributions, 45% and 55% (approximately), respectively, toward explaining protease inhibitory activities. This analysis yielded models with significant information on steric and electrostatic interactions clearly discerned by the respective coefficient contour plots when overlapped on the X-ray structure of the HIV-1 protease. The HINT CoMFA study revealed significant contribution of hydrophobicity toward protease inhibitory activity. The 3D visualization technique utilizing these contour plots as well as the receptor site geometry may significantly improve our understanding of the inhibitor-protease (HIV-1) interactions and help in designing compounds with improved activity.

Knowledge Graph

Similar Paper

Three-Dimensional Quantitative Structure−Activity Relationship Study on Cyclic Urea Derivatives as HIV-1 Protease Inhibitors:  Application of Comparative Molecular Field Analysis
Journal of Medicinal Chemistry 1999.0
Three-Dimensional Quantitative Structure−Activity Relationships of Cyclo-oxygenase-2 (COX-2) Inhibitors: A Comparative Molecular Field Analysis
Journal of Medicinal Chemistry 2001.0
3D-QSAR(Three-Dimensional Quantitative Structure)-Activity Relationship Of Angiotensin-Converting Enzyme And Thermolysin Inhibitors. II. A Comparison Of CoMFA Models Incorporating Molecular Orbital Fields And Desolvation Free Energies Based On Active-Analog And Complementary-Receptor-Field Alignment Rules
Journal of Medicinal Chemistry 1993.0
CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides
European Journal of Medicinal Chemistry 2014.0
Predictive Three-Dimensional Quantitative Structure−Activity Relationship of Cytochrome P450 1A2 Inhibitors
Journal of Medicinal Chemistry 2005.0
Three-Dimensional Quantitative Structure-Activity Relationships of Sulfonamide Endothelin Inhibitors
Journal of Medicinal Chemistry 1995.0
Structure-Based Alignment and Comparative Molecular Field Analysis of Acetylcholinesterase Inhibitors
Journal of Medicinal Chemistry 1996.0
Cyclic HIV Protease Inhibitors:  Synthesis, Conformational Analysis, P2/P2‘ Structure−Activity Relationship, and Molecular Recognition of Cyclic Ureas
Journal of Medicinal Chemistry 1996.0
3D-QSAR study of benzene sulfonamide analogs as carbonic anhydrase II inhibitors
Bioorganic & Medicinal Chemistry Letters 2010.0
3D-QSAR CoMFA on Cyclin-Dependent Kinase Inhibitors
Journal of Medicinal Chemistry 2000.0