Antitumor Benzothiazoles. 8. Synthesis, Metabolic Formation, and Biological Properties of the C- and N-Oxidation Products of Antitumor 2-(4-Aminophenyl)benzothiazoles

Journal of Medicinal Chemistry
1999.0

Abstract

2-(4-Aminophenyl)benzothiazoles 1 and their N-acetylated forms have been converted to C- and N-hydroxylated derivatives to investigate the role of metabolic oxidation in the mode of action of this series of compounds. 2-(4-Amino-3-methylphenyl)benzothiazole (1a, DF 203, NSC 674495) is a novel and potent antitumor agent with selective growth inhibitory properties against human cancer cell lines. Very low IC(50) values (<0.1 microM) were encountered in the most sensitive breast cancer cell lines, MCF-7 and T-47D, whereas renal cell line TK-10 was weakly inhibited by 1a. Cell lines from the same tissue origin, MDA-MB-435 (breast), CAKI-1 (renal), and A498 (renal), were insensitive to 1a. Accumulation and metabolism of 1a were observed in sensitive cell lines only, with the highest rate of metabolism occurring in the most sensitive MCF-7 and T-47D cells. Thus, differential uptake and metabolism of 1a by cancer cell lines may underlie its selective profile of anticancer activity. A major metabolite in these sensitive cell lines has been identified as 2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole (6c). Hydroxylation of 1a was not detected in the homogenate of previously untreated MCF-7, T-47D, and TK-10 cells but was readily observed in homogenates of sensitive cells that were pretreated with 1a. Accumulation and covalent binding of [(14)C]1a derived radioactivity was observed in the sensitive MCF-7 cell line but not in the insensitive MDA-MB-435 cell line. The mechanism of growth inhibition by 1a, which is unknown, may be dependent on the differential metabolism of the drug to an activated form by sensitive cell lines only and its covalent binding to an intracellular protein. However, the 6-hydroxy derivative 6c is not the 'active' metabolite since, like all other C- and N-hydroxylated benzothiazoles examined in this study, it is devoid of antitumor properties in vitro.

Knowledge Graph

Similar Paper

Antitumor Benzothiazoles. 8. Synthesis, Metabolic Formation, and Biological Properties of the C- and N-Oxidation Products of Antitumor 2-(4-Aminophenyl)benzothiazoles
Journal of Medicinal Chemistry 1999.0
Antitumor Benzothiazoles. 7. Synthesis of 2-(4-Acylaminophenyl)benzothiazoles and Investigations into the Role of Acetylation in the Antitumor Activities of the Parent Amines
Journal of Medicinal Chemistry 1999.0
Antitumor Benzothiazoles. 14. Synthesis and in Vitro Biological Properties of Fluorinated 2-(4-Aminophenyl)benzothiazoles
Journal of Medicinal Chemistry 2001.0
Antitumor Benzothiazoles. 26. 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a Simple Fluorinated 2-Arylbenzothiazole, Shows Potent and Selective Inhibitory Activity against Lung, Colon, and Breast Cancer Cell Lines
Journal of Medicinal Chemistry 2006.0
Synthesis of benzothiazole derivatives and their biological evaluation as anticancer agents
Medicinal Chemistry Research 2012.0
Benzothiazole carbamates and amides as antiproliferative species
European Journal of Medicinal Chemistry 2018.0
New anticancer active and selective phenylene-bisbenzothiazoles: Synthesis, antiproliferative evaluation and DNA binding
European Journal of Medicinal Chemistry 2013.0
Synthesis and antitumor evaluation of 5-(benzo[d][1,3]dioxol-5-ylmethyl)-4-(tert-butyl)-N-arylthiazol-2-amines
MedChemComm 2016.0
Antitumour Benzothiazoles. Part 15: The Synthesis and Physico-Chemical Properties of 2-(4-Aminophenyl)benzothiazole Sulfamate Salt Derivatives
Bioorganic &amp; Medicinal Chemistry Letters 2001.0
Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents
European Journal of Medicinal Chemistry 2009.0