Urea−PETT Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 3. Synthesis and Further Structure−Activity Relationship Studies of PETT Analogues

Journal of Medicinal Chemistry
1999.0

Abstract

The further development of allosteric HIV-1 RT inhibitors in the urea analogue series of PETT (phenylethylthiazolylthiourea) derivatives is described here. The series includes derivatives with an ethyl linker (1-5) and racemic (6-16) and enantiomeric (17-20) cis-cyclopropane compounds. The antiviral activity was determined both at the RT level and in cell culture on both wild-type and mutant forms of HIV-1. Most compounds have anti-HIV-1 activity on the wt in the nanomolar range. Resistant HIV-1 was selected in vitro for some of the compounds, and the time for resistant HIV-1 to develop was longer for urea-PETT compounds than it was for reference compounds. Preliminary pharmacokinetics in rats showed that compound 18 is orally bioavailable and penetrates well into the brain. The three-dimensional structure of complexes between HIV-1 RT and two enantiomeric compounds (17 and 18) have been determined. The structures show similar binding in the NNI binding pocket. The propionylphenyl moieties of both inhibitors show perfect stacking to tyrosine residues 181 and 188. The cyclopropyl moiety of the (+)-enantiomer 18 exhibits optimal packing distances for the interactions with leucine residue 100 and valine residue 179.

Knowledge Graph

Similar Paper

Urea−PETT Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 3. Synthesis and Further Structure−Activity Relationship Studies of PETT Analogues
Journal of Medicinal Chemistry 1999.0
Synthesis and anti-HIV activities of urea-pETT analogs belonging to a new class of potent non-nucleoside HIV-1 Reverse transcriptase inhibitors
Bioorganic & Medicinal Chemistry Letters 1998.0
Phenethylthiazolylthiourea (PETT) Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 2. Synthesis and Further Structure−Activity Relationship Studies of PETT Analogs
Journal of Medicinal Chemistry 1996.0
Phenethylthiazolethiourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs
Journal of Medicinal Chemistry 1995.0
Structure-based design of N-[2-(1-piperidinylethyl)]-N′-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)]-N′-[2-(5-bromopyridyl)]-thiourea as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase
Bioorganic & Medicinal Chemistry Letters 1998.0
1-[2-(2-Benzoyl- and 2-benzylphenoxy)ethyl]uracils as potent anti-HIV-1 agents
Bioorganic & Medicinal Chemistry 2011.0
Picomolar Inhibitors of HIV-1 Reverse Transcriptase: Design and Crystallography of Naphthyl Phenyl Ethers
ACS Medicinal Chemistry Letters 2014.0
Benzophenone Derivatives: A Novel Series of Potent and Selective Inhibitors of Human Immunodeficiency Virus Type 1 Reverse Transcriptase
Journal of Medicinal Chemistry 1995.0
Specific Targeting of Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer Grip Region. 2. Stereoselective Interaction to Overcome the Effects of Drug Resistant Mutations
Journal of Medicinal Chemistry 2009.0
Stereochemistry of halopyridyl and thiazolyl thiourea compounds is a major determinant of their potency as nonnucleoside inhibitors of HIV-1 reverse transcriptase
Bioorganic & Medicinal Chemistry Letters 2000.0