4-(3-Chloro-4-methoxybenzyl)aminophthalazines:  Synthesis and Inhibitory Activity toward Phosphodiesterase 5

Journal of Medicinal Chemistry
2000.0

Abstract

We synthesized various 4-(3-chloro-4-methoxybenzyl)aminophthalazines substituted at the 1- and 6-positions and evaluated their inhibitory activity toward phosphodiesterase 5 (PDE5) and their vasorelaxant activity in isolated porcine coronary arteries precontracted with prostaglandin F2alpha (10(-5) M). The preferred substituents at the 1-position of the phthalazine were 4-hydroxypiperidino, 4-hydroxymethylpiperidino, 4-(2-hydroxyethyl)piperidino, and 4-oxopiperidino. Among these compounds, [4-(3-chloro-4-methoxybenzyl)amino-1-(4-hydroxy)piperidino]-6-phthala zinecarbonitrile monohydrochloride (13) exhibited potent PDE5 inhibitory activity (IC(50) = 0.56 nM) with >1700-fold high selectivity over other PDE isozymes (PDE1-4). Compound 13 exhibited the most potent vasorelaxant action (EC(50) = 13 nM) in this series of compounds. Compound 13 reduced mean pulmonary arterial pressure by 29.9 +/- 3.1% when administered intravenously at 30 microg/kg to the chronically hypoxic rats and had an apparent oral bioavailability of about 19.5% in rats and was selected for further biological evaluation.

Knowledge Graph

Similar Paper

4-(3-Chloro-4-methoxybenzyl)aminophthalazines:  Synthesis and Inhibitory Activity toward Phosphodiesterase 5
Journal of Medicinal Chemistry 2000.0
8-(3-Chloro-4-methoxybenzyl)-8H-pyrido[2,3-d]pyrimidin-7-one derivatives as potent and selective phosphodiesterase 5 inhibitors
Bioorganic & Medicinal Chemistry Letters 2015.0
Design, synthesis and evaluation of N2,N4-diaminoquinazoline based inhibitors of phosphodiesterase type 5
Bioorganic & Medicinal Chemistry Letters 2019.0
Design and synthesis of pyrazolo[3,4-d]pyrimidinone derivatives: Discovery of selective phosphodiesterase-5 inhibitors
Bioorganic & Medicinal Chemistry Letters 2020.0
Cyclic GMP Phosphodiesterase Inhibitors. 2. Requirement of 6-Substitution of Quinazoline Derivatives for Potent and Selective Inhibitory Activity
Journal of Medicinal Chemistry 1994.0
Synthesis, biological evaluation and structure–activity relationships of new phthalazinedione derivatives with vasorelaxant activity
European Journal of Medicinal Chemistry 2014.0
Novel Selective PDE4 Inhibitors. 2. Synthesis and Structure−Activity Relationships of 4-Aryl-Substituted cis-Tetra- and cis-Hexahydrophthalazinones
Journal of Medicinal Chemistry 2001.0
Phthalazine PDE4 inhibitors. Part 2: The synthesis and biological evaluation of 6-methoxy-1,4-disubstituted derivatives
Bioorganic & Medicinal Chemistry Letters 2001.0
Novel, Potent, and Selective Phosphodiesterase 5 Inhibitors:  Synthesis and Biological Activities of a Series of 4-Aryl-1-isoquinolinone Derivatives
Journal of Medicinal Chemistry 2001.0
Discovery and Optimization of Chromeno[2,3-c]pyrrol-9(2H)-ones as Novel Selective and Orally Bioavailable Phosphodiesterase 5 Inhibitors for the Treatment of Pulmonary Arterial Hypertension
Journal of Medicinal Chemistry 2017.0