New Azolidinediones as Inhibitors of Protein Tyrosine Phosphatase 1B with Antihyperglycemic Properties

Journal of Medicinal Chemistry
2000.0

Abstract

Insulin resistance in the liver and peripheral tissues together with a pancreatic cell defect are the common causes of type 2 diabetes. It is now appreciated that insulin resistance can result from a defect in the insulin receptor signaling system, at a site post binding of insulin to its receptor. Protein tyrosine phosphatases (PTPases) have been shown to be negative regulators of the insulin receptor. Inhibiton of PTPases may be an effective method in the treatment of type 2 diabetes. A series of azolidinediones has been prepared as protein tyrosine phosphatase 1B (PTP1B) inhibitors. Several compounds were potent inhibitors against the recombinant rat and human PTP1B enzymes with submicromolar IC(50) values. Elongated spacers between the azolidinedione moiety and the central aromatic portion of the molecule as well as hydrophobic groups at the vicinity of this aromatic region were very important to the inhibitory activity. Oxadiazolidinediones 87 and 88 and the corresponding acetic acid analogues 119 and 120 were the best h-PTP1B inhibitors with IC(50) values in the range of 0.12-0.3 microM. Several compounds normalized plasma glucose and insulin levels in the ob/ob and db/db diabetic mouse models.

Knowledge Graph

Similar Paper

New Azolidinediones as Inhibitors of Protein Tyrosine Phosphatase 1B with Antihyperglycemic Properties
Journal of Medicinal Chemistry 2000.0
PTP1B Inhibition and Antihyperglycemic Activity in the ob/ob Mouse Model of Novel 11-Arylbenzo[b]naphtho[2,3-d]furans and 11-Arylbenzo[b]naphtho[2,3-d]thiophenes
Journal of Medicinal Chemistry 1999.0
Synthesis of 3,5-disubstituted isoxazolines as protein tyrosine phosphatase 1B inhibitors
Medicinal Chemistry Research 2008.0
Design, synthesis and docking studies on phenoxy-3-piperazin-1-yl-propan-2-ol derivatives as protein tyrosine phosphatase 1B inhibitors
Bioorganic & Medicinal Chemistry Letters 2010.0
Discovery of novel bromophenol 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isobutoxymethyl)benzyl)benzene-1,2-diol as protein tyrosine phosphatase 1B inhibitor and its anti-diabetic properties in C57BL/KsJ-db/db mice
European Journal of Medicinal Chemistry 2013.0
Thiazolidinedione derivatives as PTP1B inhibitors with antihyperglycemic and antiobesity effects
Bioorganic & Medicinal Chemistry Letters 2009.0
Synthesis, in vitro and computational studies of protein tyrosine phosphatase 1B inhibition of a small library of 2-arylsulfonylaminobenzothiazoles with antihyperglycemic activity
Bioorganic & Medicinal Chemistry 2009.0
Identification of novel urea derivatives as PTP1B inhibitors: synthesis, biological evaluation and structure–activity relationships
MedChemComm 2013.0
Novel 2-aryl-naphtho[1,2-d]oxazole derivatives as potential PTP-1B inhibitors showing antihyperglycemic activities
European Journal of Medicinal Chemistry 2009.0
Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus
European Journal of Medicinal Chemistry 2020.0