Structural Studies on Bioactive Compounds. 34. Design, Synthesis, and Biological Evaluation of Triazenyl-Substituted Pyrimethamine Inhibitors of Pneumocystis carinii Dihydrofolate Reductase

Journal of Medicinal Chemistry
2001.0

Abstract

The triazenyl-pyrimethamine derivative 3a (TAB), a potent and selective inhibitor of Pneumocystis carinii DHFR, was selected as the starting point for a lead optimization study. Molecular modeling studies, corroborated by a recent crystal structure determination of the ternary complex of P. carinii DHFR--NADPH bound to TAB, predicted that modifications to the acetoxy residue of the lead inhibitor could exploit binding opportunities in the vicinity of an active site pocket bounded by residues Ile33, Lys37, and Leu72. Substitutions in the benzyl moiety with electron-donating and electron-withdrawing groups were predicted to probe face-edge interactions with amino acid Phe69 unique to the P. carinii enzyme. New triazenes 10a--v and 12a--f were prepared by coupling the diazonium tetrafluoroborate salt 6b of aminopyrimethamine with substituted benzylamines or phenethylamines. The most potent of the new inhibitors against P. carinii DHFR was the naphthylmethyl-substituted triazene 10t (IC(50): 0.053 microM), but a more substantial increase in potency against the rat liver DHFR led to a reduction in selectivity (ratio rat liver DHFR IC(50)/P. carinii DHFR IC(50): 5.36) compared to the original lead structure 3a (ratio rat liver DHFR IC(50)/P. carinii DHFR IC(50): 114).

Knowledge Graph

Similar Paper

Structural Studies on Bioactive Compounds. 34. Design, Synthesis, and Biological Evaluation of Triazenyl-Substituted Pyrimethamine Inhibitors of Pneumocystis carinii Dihydrofolate Reductase
Journal of Medicinal Chemistry 2001.0
Structural Studies on Bioactive Compounds. 28. Selective Activity of Triazenyl-Substituted Pyrimethamine Derivatives against Pneumocystis carinii Dihydrofolate Reductase
Journal of Medicinal Chemistry 1997.0
Development of substituted pyrido[3,2-d]pyrimidines as potent and selective dihydrofolate reductase inhibitors for pneumocystis pneumonia infection
Bioorganic & Medicinal Chemistry Letters 2019.0
Quantitative structure-activity relationships of the inhibition of Pneumocystis carinii dihydrofolate reductase by 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(X-phenyl)-s-triazines
Journal of Medicinal Chemistry 1995.0
Design, Synthesis, and Antifolate Activity of New Analogues of Piritrexim and Other Diaminopyrimidine Dihydrofolate Reductase Inhibitors with ω-Carboxyalkoxy or ω-Carboxy-1-alkynyl Substitution in the Side Chain
Journal of Medicinal Chemistry 2005.0
Selective Pneumocystis carinii Dihydrofolate Reductase Inhibitors:  Design, Synthesis, and Biological Evaluation of New 2,4-Diamino-5-substituted-furo[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1998.0
Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium Dihydrofolate Reductases by 2,4-Diamino-5-[2-methoxy-5-(ω-carboxyalkyloxy)benzyl]pyrimidines:  Marked Improvement in Potency Relative to Trimethoprim and Species Selectivity Relative to Piritrexim
Journal of Medicinal Chemistry 2002.0
Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic infection agents
Bioorganic & Medicinal Chemistry 2018.0
Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents:  Synthesis and Biological Activities of 2,4-Diamino-5-methyl-6-[(monosubstituted anilino)methyl]- pyrido[2,3-d]pyrimidines
Journal of Medicinal Chemistry 1999.0
Synthesis and Biological Evaluation of 2,4-Diamino-6-(arylaminomethyl)pyrido[2,3-d]pyrimidines as Inhibitors of Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase and as Antiopportunistic Infection and Antitumor Agents
Journal of Medicinal Chemistry 2003.0