Design, Synthesis, and Structure−Activity Relationships of a Series of 3-[2-(1-Benzylpiperidin-4-yl)ethylamino]pyridazine Derivatives as Acetylcholinesterase Inhibitors

Journal of Medicinal Chemistry
2001.0

Abstract

Starting from the 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine 1, we performed the design, the synthesis, and the structure-activity relationships of a series of pyridazine analogues acting as AChE inhibitors. Structural modifications were achieved on four different parts of compound 1 and led to the following observations: (i) introduction of a lipophilic environment in the C-5 position of the pyridazine ring is favorable for the AChE-inhibitory activity and the AChE/BuChE selectivity; (ii) substitution and various replacements of the C-6 phenyl group are possible and led to equivalent or slightly more active derivatives; (iii) isosteric replacements or modifications of the benzylpiperidine moiety are detrimental to the activity. Among all derivatives prepared, the indenopyridazine derivative 4g was found to be the more potent inhibitor with an IC(50) of 10 nM on electric eel AChE. Compared to compound 1, this represents a 12-fold increase in potency. Moreover, 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-5-methyl-6-phenylpyridazine 4c, which showed an IC(50) of 21 nM, is 100-times more selective for human AChE (human BuChE/AChE ratio of 24) than the reference compound tacrine.

Knowledge Graph

Similar Paper

Design, Synthesis, and Structure−Activity Relationships of a Series of 3-[2-(1-Benzylpiperidin-4-yl)ethylamino]pyridazine Derivatives as Acetylcholinesterase Inhibitors
Journal of Medicinal Chemistry 2001.0
Aminopyridazines as Acetylcholinesterase Inhibitors
Journal of Medicinal Chemistry 1999.0
Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine, and related derivatives
Journal of Medicinal Chemistry 1992.0
Synthesis and structure-activity relationship study of benzofuran-based chalconoids bearing benzylpyridinium moiety as potent acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry 2015.0
Novel alkyl- and arylcarbamate derivatives with N-benzylpiperidine and N-benzylpiperazine moieties as cholinesterases inhibitors
European Journal of Medicinal Chemistry 2010.0
Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors
Bioorganic & Medicinal Chemistry 2013.0
Synthesis, Crystal Structure and Cholinesterase Enzymes Inhibitory Activities of New Pyridine Alkaloid Derivative
Asian Journal of Chemistry 2015.0
Design and Synthesis of 1-Heteroaryl-3-(1-benzyl-4-piperidinyl)propan-1-one Derivatives as Potent, Selective Acetylcholinesterase Inhibitors
Journal of Medicinal Chemistry 1995.0
Indolinone-based acetylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling
European Journal of Medicinal Chemistry 2014.0
Design, synthesis, and evaluation of benzophenone derivatives as novel acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry 2009.0