Discovery of Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2:  Synthesis, X-ray Crystallographic Analysis, and Biological Activities

Journal of Medicinal Chemistry
2002.0

Abstract

High throughput screening identified 2-acetamido-thiazolylthio acetic ester 1 as an inhibitor of cyclin-dependent kinase 2 (CDK2). Because this compound is inactive in cells and unstable in plasma, we have stabilized it to metabolic hydrolysis by replacing the ester moiety with a 5-ethyl-substituted oxazole as in compound 14. Combinatorial and parallel synthesis provided a rapid analysis of the structure-activity relationship (SAR) for these inhibitors of CDK2, and over 100 analogues with IC(50) values in the 1-10 nM range were rapidly prepared. The X-ray crystallographic data of the inhibitors bound to the active site of CDK2 protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues displayed potent and broad spectrum antiproliferative activity across a panel of tumor cell lines in vitro. In addition, A2780 ovarian carcinoma cells undergo rapid apoptosis following exposure to CDK2 inhibitors of this class. Mechanism of action studies have confirmed that the phosphorylation of CDK2 substrates such as RB, histone H1, and DNA polymerase alpha (p70 subunit) is reduced in the presence of compound 14. Further optimization led to compounds such as water soluble 45, which possesses a favorable pharmacokinetic profile in mice and demonstrates significant antitumor activity in vivo in several murine and human models, including an engineered murine mammary tumor that overexpresses cyclin E, the coactivator of CDK2.

Knowledge Graph

Similar Paper

Discovery of Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2:  Synthesis, X-ray Crystallographic Analysis, and Biological Activities
Journal of Medicinal Chemistry 2002.0
Synthesis and biological activity of N-aryl-2-aminothiazoles: potent pan inhibitors of cyclin-dependent kinases
Bioorganic & Medicinal Chemistry Letters 2004.0
Development of Highly Potent and Selective Diaminothiazole Inhibitors of Cyclin-Dependent Kinases
Journal of Medicinal Chemistry 2013.0
N-(Cycloalkylamino)acyl-2-aminothiazole Inhibitors of Cyclin-Dependent Kinase 2. N-[5-[[[5-(1,1-Dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4- piperidinecarboxamide (BMS-387032), a Highly Efficacious and Selective Antitumor Agent
Journal of Medicinal Chemistry 2004.0
Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy
Bioorganic & Medicinal Chemistry Letters 2018.0
Oxindole-Based Inhibitors of Cyclin-Dependent Kinase 2 (CDK2):  Design, Synthesis, Enzymatic Activities, and X-ray Crystallographic Analysis
Journal of Medicinal Chemistry 2001.0
Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors
European Journal of Medicinal Chemistry 2021.0
Synthesis and Biological Evaluation of 1-Aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one Inhibitors of Cyclin-Dependent Kinases
Journal of Medicinal Chemistry 2004.0
Pyrazolo[3,4-c]pyridazines as Novel and Selective Inhibitors of Cyclin-Dependent Kinases
Journal of Medicinal Chemistry 2005.0
Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity
European Journal of Medicinal Chemistry 2020.0