Carbonic Anhydrase Inhibitors. Inhibition of Cytosolic Isozymes I and II and Transmembrane, Tumor-Associated Isozyme IX with Sulfamates Including EMATE Also Acting as Steroid Sulfatase Inhibitors

Journal of Medicinal Chemistry
2003.0

Abstract

A series of sulfamates or bis-sulfamates incorporating aliphatic, aromatic, polycyclic (steroidal), and sugar moieties in their molecules has been synthesized and assayed as inhibitors of the zinc enzyme carbonic anhydrase (CA), and more precisely of the cytosolic isozymes CA I andII, and the transmembrane, tumor-associated isozymes CA IX. Some of these compounds were previously reported to act as inhibitors of steroid sulfatases, among which estrone sulfatase (ES) and dehydroepiandrosterone sulfatase (DHEAS) are the key therapeutic targets for estrogen-dependent tumors. Very potent (nanomolar) inhibitors were detected against the three investigated CA isozymes. Best CA I inhibitors were phenylsulfamate and some of its 4-halogeno derivatives, as well as the aliphatic compound n-octyl sulfamate. Against CA II, low nanomolar inhibitors (1.1-5 nM) were phenylsulfamate and some of its 4-halogeno/nitro derivatives, n-octyl sulfamate, and estradiol 3,17beta-disulfamate among others. All the investigated sulfamates showed efficient CA IX inhibitory properties, with inhibition constants in the range of 18-63 nM. The best CA IX inhibitor detected so far was 4-chlorophenylsulfamate. These data are critical for the design of novel antitumor properties, mainly for hypoxic tumors that overexpress CA IX, which are nonresponsive to radiation or chemotherapy. The antitumor properties of the ES/DHEAS inhibitors in clinical trials may on the other hand also be due to their potent inhibitory properties of CA isozymes involved in tumorigenicity, such as CA II and CA IX.

Knowledge Graph

Similar Paper

Carbonic Anhydrase Inhibitors. Inhibition of Cytosolic Isozymes I and II and Transmembrane, Tumor-Associated Isozyme IX with Sulfamates Including EMATE Also Acting as Steroid Sulfatase Inhibitors
Journal of Medicinal Chemistry 2003.0
Carbonic Anhydrase Inhibitors:  Inhibition of Transmembrane, Tumor-Associated Isozyme IX, and Cytosolic Isozymes I and II with Aliphatic Sulfamates
Journal of Medicinal Chemistry 2003.0
Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with bis-sulfamates
Bioorganic & Medicinal Chemistry Letters 2005.0
Carbonic anhydrase inhibitors; Fluorinated phenyl sulfamates show strong inhibitory activity and selectivity for the inhibition of the tumor-associated isozymes IX and XII over the cytosolic ones I and II
Bioorganic & Medicinal Chemistry Letters 2009.0
Carbonic anhydrase inhibitors: Inhibition of cytosolic/tumor-associated isoforms I, II, and IX with iminodiacetic carboxylates/hydroxamates also incorporating benzenesulfonamide moieties
Bioorganic & Medicinal Chemistry Letters 2007.0
Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating thioureido-sulfanilyl scaffolds
Bioorganic & Medicinal Chemistry Letters 2005.0
Carbonic anhydrase inhibitors: Inhibition of human cytosolic isozymes I and II and tumor-associated isozymes IX and XII with S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides
Bioorganic & Medicinal Chemistry 2008.0
Carbonic anhydrase inhibitors: Inhibition of the tumor-associated isozymes IX and XII with a library of aromatic and heteroaromatic sulfonamides
Bioorganic & Medicinal Chemistry Letters 2005.0
Inhibition of tumor-associated human carbonic anhydrase isozymes IX and XII by a new class of substituted-phenylacetamido aromatic sulfonamides
Bioorganic & Medicinal Chemistry 2013.0
Carbonic anhydrase inhibitors. Inhibition of cytosolic isoforms I and II, and extracellular isoforms IV, IX, and XII with sulfamides incorporating sugar moieties
Bioorganic & Medicinal Chemistry Letters 2007.0