Design and Synthesis of Poly ADP-ribose Polymerase-1 Inhibitors. 2. Biological Evaluation of Aza-5[H]-phenanthridin-6-ones as Potent, Aqueous-Soluble Compounds for the Treatment of Ischemic Injuries

Journal of Medicinal Chemistry
2003.0

Abstract

A series of aza-5[H]-phenanthridin-6-ones were synthesized and evaluated as inhibitors of poly ADP-ribose polymerase-1 (PARP-1). Inhibitory potency of the unsubstituted aza-5[H]-phenanthridin-6-ones (i.e., benzonaphthyridones) was dependent on the position of the nitrogen atom within the core structure. The A ring nitrogen analogues (7-, 8-, and 10-aza-5[H]-phenanthridin-6-ones) were an order of magnitude less potent than C ring nitrogen analogues (1-, 2-, 3-, and 4-aza-5[H]-phenanthridin-6-ones). Preliminary stroke results from 1- and 2-aza-5[H]-phenanthridin-6-one prompted structure-activity relationships to be established for several 2- and 3-substituted 1-aza-5[H]-phenanthridin-6-ones. The 2-substituted 1-aza-5[H]-phenanthridin-6-ones were designed to improve the solubility and pharmacokinetic profiles for this series of PARP-1 inhibitors. Most importantly, three compounds from this series demonstrated statistically significant protective effects in rat models of stroke and heart ischemia.

Knowledge Graph

Similar Paper

Design and Synthesis of Poly ADP-ribose Polymerase-1 Inhibitors. 2. Biological Evaluation of Aza-5[H]-phenanthridin-6-ones as Potent, Aqueous-Soluble Compounds for the Treatment of Ischemic Injuries
Journal of Medicinal Chemistry 2003.0
Discovery of novel benzo[b][1,4]oxazin-3(4H)-ones as poly(ADP-ribose)polymerase inhibitors
Bioorganic & Medicinal Chemistry Letters 2013.0
Novel Tricyclic Poly(ADP-ribose) Polymerase-1 Inhibitors with Potent Anticancer Chemopotentiating Activity:  Design, Synthesis, and X-ray Cocrystal Structure
Journal of Medicinal Chemistry 2002.0
The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1)
Bioorganic & Medicinal Chemistry Letters 2004.0
Design, synthesis and biological evaluation of pyridazino[3,4,5-de]quinazolin-3(2H)-one as a new class of PARP-1 inhibitors
Bioorganic & Medicinal Chemistry Letters 2015.0
Design, Synthesis, and Evaluation of 3,4-Dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones as Inhibitors of Poly(ADP-Ribose) Polymerase
Journal of Medicinal Chemistry 2004.0
Synthesis of isoquinolinone-based tetracycles as poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors
Bioorganic & Medicinal Chemistry 2009.0
Resistance-Modifying Agents. 5. Synthesis and Biological Properties of Quinazolinone Inhibitors of the DNA Repair Enzyme Poly(ADP-ribose) Polymerase (PARP)
Journal of Medicinal Chemistry 1998.0
Synthesis and SAR optimization of quinazolin-4(3H)-ones as poly(ADP-ribose)polymerase-1 inhibitors
European Journal of Medicinal Chemistry 2012.0
Synthesis and Evaluation of a New Generation of Orally Efficacious Benzimidazole-Based Poly(ADP-ribose) Polymerase-1 (PARP-1) Inhibitors as Anticancer Agents
Journal of Medicinal Chemistry 2009.0