Design, Synthesis, and Structure−Activity Relationship Studies of Novel 6,7-Locked-[7-(2-alkoxy-3,5-dialkylbenzene)-3-methylocta]-2,4,6-trienoic Acids

Journal of Medicinal Chemistry
2003.0

Abstract

Retinoid X receptor:peroxisome proliferative-activated receptor (RXR:PPAR) heterodimers play a critical role in the regulation of glucose (RXR/PPARgamma) and lipid metabolism (RXR/PPARalpha). Previously, we described a concise structure-activity relationship study of selective RXR modulators possessing a (2E,4E,6Z)-3-methyl-7-(3,5-dialkyl-6-alkoxyphenyl)-octa-2,4,6-trienoic acid scaffold. These studies were focused on the 2-position alkoxy side chain. We describe here the design and synthesis of a novel series of RXR selective modulators possessing the same aromatic core structure with the addition of a ring locked 6-7-Z-olefin on the trienoic acid moiety. The synthesis and structure-activity relationship studies of these 6,7-locked cyclopentenyl, phenyl, thienyl, furan, and pyridine-trienoic acid derivatives is presented herein.

Knowledge Graph

Similar Paper

Design, Synthesis, and Structure−Activity Relationship Studies of Novel 6,7-Locked-[7-(2-alkoxy-3,5-dialkylbenzene)-3-methylocta]-2,4,6-trienoic Acids
Journal of Medicinal Chemistry 2003.0
Novel (2E,4E,6Z)-7-(2-Alkoxy-3,5-dialkylbenzene)-3-methylocta-2,4,6-trienoic Acid Retinoid X Receptor Modulators Are Active in Models of Type 2 Diabetes
Journal of Medicinal Chemistry 2003.0
Design and synthesis of novel RXR-selective modulators with improved pharmacological profile
Bioorganic & Medicinal Chemistry Letters 2003.0
Design, synthesis and structure–activity relationship of novel RXR-selective modulators
Bioorganic & Medicinal Chemistry Letters 2004.0
Tuning Nuclear Receptor Selectivity of Wy14,643 towards Selective Retinoid X Receptor Modulation
Journal of Medicinal Chemistry 2019.0
A Novel Biphenyl-based Chemotype of Retinoid X Receptor Ligands Enables Subtype and Heterodimer Preferences
ACS Medicinal Chemistry Letters 2019.0
Structure–activity relationship studies of non-carboxylic acid peroxisome proliferator-activated receptor α/δ (PPARα/δ) dual agonists
Bioorganic & Medicinal Chemistry 2016.0
Design and Synthesis of α-Aryloxyphenylacetic Acid Derivatives:  A Novel Class of PPARα/γ Dual Agonists with Potent Antihyperglycemic and Lipid Modulating Activity
Journal of Medicinal Chemistry 2005.0
Modeling, Synthesis and Biological Evaluation of Potential Retinoid X Receptor (RXR) Selective Agonists: Novel Analogues of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene)
Journal of Medicinal Chemistry 2009.0
Structure–activity relationship-guided development of retinoic acid receptor-related orphan receptor gamma (RORγ)-selective inverse agonists with a phenanthridin-6(5H)-one skeleton from a liver X receptor ligand
Bioorganic & Medicinal Chemistry 2014.0