Synthesis, Anti-HIV Activity, and Molecular Mechanism of Drug Resistance of l-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluoro-4‘-thionucleosides

Journal of Medicinal Chemistry
2003.0

Abstract

beta-l-2',3'-Didehydro-2',3'-dideoxy-2'-fluoro-4'-thionucleosides (beta-l-2'-F-4'-S-d4Ns) have been synthesized and evaluated against HIV-1 in primary human lymphocytes. The key intermediate 8, which was prepared from 2,3-O-isopropylidene-l-glyceraldehyde 1 in 13 steps, was condensed with various pyrimidine and purine bases followed by elimination and deprotection to give the target compounds, beta-l-2'-F-4'-S-d4Ns (17-20 and 27-30). The antiviral activity of the newly synthesized compounds was evaluated against HIV-1 in human peripheral blood mononuclear (PBM) cells, among which the cytosine 17, 5-fluorocytosine 18, and adenine 27 derivatives showed potent anti-HIV activities (EC(50) = 0.12, 0.15, and 1.74 microM, respectively) without significant cytotoxicity up to 100 microM in human PBM, CEM, and Vero cells. The cytosine derivative 17 (beta-l-2'-F-4'-S-d4C), however, showed cross-resistance to a 3TC-resistant variant (HIV-1(M184V)). Molecular modeling studies suggest that the pattern of antiviral activity, similar to that of beta-l-2'-F-d4N, stemmed from their conformational and structural similarities. The isosteric substitution of sulfur for 4'-oxygen was well tolerated in the catalytic site of HIV-1 reverse transcriptase in the wild-type virus. However, the steric hindrance between the sugar moiety of the unnatural l-nucleoside and the side chains of Val184 of M184V RT in 3TC-resistant mutant HIV strains destabilizes the RT-nucleoside triphosphate complex, which causes the cross-resistance to 3TC (M184V mutant).

Knowledge Graph

Similar Paper

Synthesis, Anti-HIV Activity, and Molecular Mechanism of Drug Resistance of <scp>l</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluoro-4‘-thionucleosides
Journal of Medicinal Chemistry 2003.0
Synthesis, Structure−Activity Relationships, and Mechanism of Drug Resistance of <scp>d</scp>- and <scp>l</scp>-β-3‘-Fluoro-2‘,3‘-unsaturated-4‘-thionucleosides as Anti-HIV Agents
Journal of Medicinal Chemistry 2004.0
Stereoselective Synthesis and Antiviral Activity of <scp>d</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluoro-4‘-thionucleosides
Journal of Medicinal Chemistry 2002.0
<scp>l</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-3‘-fluoronucleosides:  Synthesis, Anti-HIV Activity, Chemical and Enzymatic Stability, and Mechanism of Resistance
Journal of Medicinal Chemistry 2003.0
Synthesis, Antiviral Activity, and Mechanism of Drug Resistance of <scp>d</scp>- and <scp>l</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluorocarbocyclic Nucleosides
Journal of Medicinal Chemistry 2005.0
Synthesis, Structure−Activity Relationships, and Drug Resistance of β-<scp>d</scp>-3‘-Fluoro-2‘,3‘-Unsaturated Nucleosides as Anti-HIV Agents
Journal of Medicinal Chemistry 2004.0
Structure−Activity Relationships of 2‘-Fluoro-2‘,3‘-unsaturated <scp>d</scp>-Nucleosides as Anti-HIV-1 Agents
Journal of Medicinal Chemistry 2002.0
Design, synthesis, and biological evaluation of novel iso-d-2′,3′-dideoxy-3′-fluorothianucleoside derivatives
Bioorganic &amp; Medicinal Chemistry 2007.0
Synthesis and Anti-HIV Activity of <scp>d</scp>- and <scp>l</scp>-Thietanose Nucleosides
Journal of Medicinal Chemistry 2006.0
Synthesis and anti-HIV activity of 4'-thio-2',3'-dideoxynucleosides
Journal of Medicinal Chemistry 1992.0