Bisintercalating Threading Diacridines:  Relationships between DNA Binding, Cytotoxicity, and Cell Cycle Arrest

Journal of Medicinal Chemistry
2003.0

Abstract

We have synthesized a series of bis(9-aminoacridine-4-carboxamides) linked via the 9-position with neutral flexible alkyl chains, charged flexible polyamine chains, and a semirigid charged piperazine-containing chain. The carboxamide side chains comprise N,N-dimethylaminoethyl and ethylmorpholino groups. The compounds are designed to bisintercalate into DNA by a threading mode, in which the side chains are intended to form hydrogen-bonding contacts with the O6/N7 atoms of guanine in the major groove, and the linkers are intended to lie in the minor groove. By this means, we anticipate that they will dissociate slowly from DNA, and be cytotoxic as a consequence of template inhibition of transcription. The dimers remove and reverse the supercoiling of closed circular DNA with helix unwinding angles ranging from 26 degrees to 46 degrees, confirming bifunctional intercalation in all cases, and the DNA complexes of representative members dissociate many orders of magnitude more slowly than simple aminoacridines. Cytotoxicity for human leukemic CCRF-CEM cells was determined, the most active agents having IC(50) values of 35-50 nM in a range extending over 20-fold, with neither the dimethylaminoethyl nor the ethylmorpholino series being intrinsically more toxic. In common with established transcription inhibitors, the morpholino series, with one exception, have no effect on cell cycle distribution in randomly dividing CCRF-CEM populations. By contrast, the dimethylaminoethyl series, with two exceptions, cause G2/M arrest in the manner of topoisomerase poisons, consistent with possible involvement of topoisomerases in their mode of action. Thus, the cellular response to these bisintercalating threading agents is complex and appears to be determined by both their side chain and linker structures. There are no simple relationships between structure, cytotoxicity, and cell cycle arrest, and the origins of this complexity are unclear given that the compounds bind to DNA by a common mechanism.

Knowledge Graph

Similar Paper

Bisintercalating Threading Diacridines:  Relationships between DNA Binding, Cytotoxicity, and Cell Cycle Arrest
Journal of Medicinal Chemistry 2003.0
DNA threading bis(9-aminoacridine-4-carboxamides): Effects of piperidine sidechains on DNA binding, cytotoxicity and cell cycle arrest
Bioorganic & Medicinal Chemistry 2008.0
1-[(ω-Aminoalkyl)amino]-4-[N-(ω-aminoalkyl)carbamoyl]-9-oxo-9,10-dihydro- acridines as Intercalating Cytotoxic Agents:  Synthesis, DNA Binding, and Biological Evaluation
Journal of Medicinal Chemistry 1997.0
Design, Synthesis, and Biological Properties of New Bis(acridine-4-carboxamides) as Anticancer Agents
Journal of Medicinal Chemistry 2003.0
Potential antitumor agents. 28. Deoxyribonucleic acid polyintercalating agents
Journal of Medicinal Chemistry 1978.0
Synthesis, chemical characterization of novel 1,3-dimethyl acridones as cytotoxic agents, and their DNA-binding studies
Medicinal Chemistry Research 2010.0
2,6-Di(ω-aminoalkyl)-2,5,6,7-tetrahydropyrazolo[3,4,5-mn]pyrimido[5,6,1-de]acridine-5,7-diones:  Novel, Potent, Cytotoxic, and DNA-Binding Agents
Journal of Medicinal Chemistry 2002.0
The structure-based design, synthesis, and biological evaluation of DNA-binding amide linked bisintercalating bisanthrapyrazole anticancer compounds
Bioorganic & Medicinal Chemistry 2009.0
Rational Design, Synthesis, and Biological Evaluation of Bis(pyrimido[5,6,1-de]acridines) and Bis(pyrazolo[3,4,5-kl]acridine-5-carboxamides) as New Anticancer Agents
Journal of Medicinal Chemistry 2004.0
Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors
European Journal of Medicinal Chemistry 2016.0