Synthesis, Molecular Modeling, and Biological Studies of Novel Piperidine-Based Analogues of Cocaine:  Evidence of Unfavorable Interactions Proximal to the 3α-Position of the Piperidine Ring

Journal of Medicinal Chemistry
2004.0

Abstract

A qualitative model for the binding pocket proximal to the 3alpha-substituent of the piperidine-based monoamine transporter ligands was proposed and tested. Based on this model, a new series of druglike 3alpha-modified piperidine-based analogues of cocaine were designed, synthesized, and studied for their ability to inhibit reuptake of DA, 5-HT, and NE by the DA, 5-HT, and NE transporters. We found that the insertion of at least one additional methylene group between the piperidine ring and the polar group in the 3alpha-substituent dramatically improves the activity of the compounds that are generally inactive without this additional linker. Molecular modeling analysis showed that the more flexible 3alpha-substituents can avoid unfavorable interactions with the binding sites of DAT, SERT, and NET. The present results may have important implications for the elucidation of the structural differences between DA, 5-HT, and NE transporters and for the further design of new leads for development of cocaine abuse medication as well as certain neurological disorders such as ADHD and depression.

Knowledge Graph

Similar Paper

Synthesis, Molecular Modeling, and Biological Studies of Novel Piperidine-Based Analogues of Cocaine:  Evidence of Unfavorable Interactions Proximal to the 3α-Position of the Piperidine Ring
Journal of Medicinal Chemistry 2004.0
SAR Studies of Piperidine-Based Analogues of Cocaine. 4. Effect of N-Modification and Ester Replacement
Journal of Medicinal Chemistry 2002.0
Further SAR Studies of Piperidine-Based Analogues of Cocaine. 2. Potent Dopamine and Serotonin Reuptake Inhibitors
Journal of Medicinal Chemistry 2000.0
Structure−Activity Relationship Studies of 4-[2-(Diphenylmethoxy)ethyl]-1-benzylpiperidine Derivatives and Their N-Analogues:  Evaluation of Behavioral Activity of O- and N-Analogues and Their Binding to Monoamine Transporters
Journal of Medicinal Chemistry 2001.0
Chemistry and Pharmacology of the Piperidine-Based Analogues of Cocaine. Identification of Potent DAT Inhibitors Lacking the Tropane Skeleton
Journal of Medicinal Chemistry 1998.0
Pharmacological and Behavioral Analysis of the Effects of Some Bivalent Ligand-Based Monoamine Reuptake Inhibitors
Journal of Medicinal Chemistry 2001.0
Piperidine-Based Nocaine/Modafinil Hybrid Ligands as Highly Potent Monoamine Transporter Inhibitors:  Efficient Drug Discovery by Rational Lead Hybridization
Journal of Medicinal Chemistry 2004.0
Expansion of Structure−Activity Studies of Piperidine Analogues of 1-[2-(Diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (GBR 12935) Compounds by Altering Substitutions in the N-Benzyl Moiety and Behavioral Pharmacology of Selected Molecules
Journal of Medicinal Chemistry 2002.0
Discovery of a Novel Dopamine Transporter Inhibitor, 4-Hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-Methylphenyl Ketone, as a Potential Cocaine Antagonist through 3D-Database Pharmacophore Searching. Molecular Modeling, Structure−Activity Relationships, and Behavioral Pharmacological Studies
Journal of Medicinal Chemistry 2000.0
Novel 3-Aminomethyl- and 4-Aminopiperidine Analogues of 1-[2-(Diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazines:  Synthesis and Evaluation as Dopamine Transporter Ligands
Journal of Medicinal Chemistry 2000.0