Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX

Bioorganic & Medicinal Chemistry Letters
2005.0

Abstract

A new series of aromatic benzenesulfonamides incorporating 1,3,5-triazine moieties in their molecules is reported. This series was obtained by reaction of cyanuric chloride with sulfanilamide, homosulfanilamide or 4-aminoethylbenzenesulfonamide. The prepared dichlorotriazinyl-benzenesulfonamides were subsequently derivatized by reacting them with various nucleophiles, such as ammonia, hydrazine, primary and secondary amines, amino acid derivatives or phenol. The library of sulfonamides incorporating triazinyl moieties was tested for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumour-associated hCA IX. The new compounds inhibited hCA I with inhibition constants in the range of 31-8500 nM, hCA II with inhibition constants in the range of 14-765 nM and hCA IX with inhibition constants in the range of 1.0-640 nM. Structure-activity relationship was straightforward and rather simple in this class of CA inhibitors, with the compounds incorporating compact moieties at the triazine ring (such as amino, hydrazino, ethylamino, dimethylamino or amino acyl) being the most active ones, and the derivatives incorporating such bulky moieties (n-propyl, n-butyl, diethylaminoethyl, piperazinylethyl, pyridoxal amine or phenoxy) being less effective hCA I, II and IX inhibitors. Some of the new derivatives also showed selectivity for inhibition of hCA IX over hCA II (selectivity ratios of 23.33-32.00), thus constituting excellent leads for the development of novel approaches for the management of hypoxic tumours.

Knowledge Graph

Similar Paper

Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX
Bioorganic & Medicinal Chemistry Letters 2005.0
Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties
Bioorganic & Medicinal Chemistry Letters 2004.0
Substituted benzene sulfonamides incorporating 1,3,5-triazinyl moieties potently inhibit human carbonic anhydrases II, IX and XII
Bioorganic & Medicinal Chemistry Letters 2014.0
Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides derived from 4-isothiocyanato-benzolamide
Bioorganic & Medicinal Chemistry Letters 2004.0
Sulfonamides incorporating 1,3,5-triazine moieties selectively and potently inhibit carbonic anhydrase transmembrane isoforms IX, XII and XIV over cytosolic isoforms I and II: Solution and X-ray crystallographic studies
Bioorganic & Medicinal Chemistry 2011.0
Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors
European Journal of Medicinal Chemistry 2018.0
Benzenesulfonamide bearing 1,2,4-triazole scaffolds as potent inhibitors of tumor associated carbonic anhydrase isoforms hCA IX and hCA XII
Bioorganic & Medicinal Chemistry 2014.0
Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and XII inhibitors
Bioorganic & Medicinal Chemistry 2019.0
Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors
European Journal of Medicinal Chemistry 2019.0
Carbonic anhydrase inhibitors: Synthesis and inhibition of the human carbonic anhydrase isoforms I, II, IX and XII with benzene sulfonamides incorporating 4- and 3-nitrophthalimide moieties
Bioorganic & Medicinal Chemistry 2014.0