Carbonic anhydrase inhibitors: Inhibition of the transmembrane isozyme XIV with sulfonamides

Bioorganic & Medicinal Chemistry Letters
2005.0

Abstract

The inhibition of the last human carbonic anhydrase (CA, EC 4.2.1.1) isozyme (hCA XIV) discovered has been investigated with a series of sulfonamides, including some clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and zonisamide), as well as the sulfamate antiepileptic drug topiramate. The full-length hCA XIV is an enzyme showing a medium-low catalytic activity, quite similar to that of hCA XII, with the following kinetic parameters at 20 degrees C and pH 7.5, for the CO2 hydration reaction: k(cat) = 3.12 x 10(5) s(-1) and k(cat)/K(M) = 3.9 x 10(7) M(-1) s(-1). All types of activities have been detected for the investigated compounds, with several micromolar inhibitors, including zonisamide, topiramate, and simple sulfanilamide derivatives (K(I)-s in the range of 1.46-6.50 microM). In addition, topiramate and zonisamide were observed to behave as weak hCA XII inhibitors, while zonisamide was an effective hCA IX inhibitor (K(I) of 5.1 nM). Some benzene-1,3-disulfonamide derivatives or simple five-membered heteroaromatic sulfonamides showed K(I)-s in the range of 180-680 nM against hCA XIV, whereas the most effective of such inhibitors, including 3-chloro-/bromo-sulfanilamide, benzolamide-like, ethoxzolamide-like, and acetazolamide/methazolamide-like derivatives, showed inhibition constant in the range of 13-48 nM. The best hCA XIV inhibitor was aminobenzolamide (K(I) of 13 nM), but no CA XIV-selective derivatives were evidenced. There are important differences of affinity of these sulfonamides/sulfamates for the three transmembrane CA isozymes, with CA XII showing the highest affinity, followed by CA IX, whereas CA XIV usually showed the lowest affinity for these inhibitors.

Knowledge Graph

Similar Paper

Carbonic anhydrase inhibitors: Inhibition of the transmembrane isozyme XIV with sulfonamides
Bioorganic & Medicinal Chemistry Letters 2005.0
Carbonic anhydrase inhibitors. Inhibition of the membrane-bound human and bovine isozymes IV with sulfonamides
Bioorganic & Medicinal Chemistry Letters 2005.0
Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isozyme VII with aromatic and heterocyclic sulfonamides
Bioorganic & Medicinal Chemistry Letters 2005.0
Carbonic anhydrase inhibitors. Inhibition of the transmembrane isozyme XII with sulfonamides—a new target for the design of antitumor and antiglaucoma drugs?
Bioorganic & Medicinal Chemistry Letters 2005.0
Carbonic anhydrase inhibitors. Inhibition of isoforms I, II, IV, VA, VII, IX, and XIV with sulfonamides incorporating fructopyranose–thioureido tails
Bioorganic & Medicinal Chemistry Letters 2007.0
Carbonic anhydrase inhibitors. Inhibition of cytosolic isozyme XIII with aromatic and heterocyclic sulfonamides: a novel target for the drug design
Bioorganic & Medicinal Chemistry Letters 2004.0
Carbonic anhydrase inhibitors. Synthesis, molecular structures, and inhibition of the human cytosolic isozymes I and II and transmembrane isozymes IX, XII (cancer-associated) and XIV with novel 3-pyridinesulfonamide derivatives
European Journal of Medicinal Chemistry 2011.0
Carbonic anhydrase inhibitors: Synthesis and inhibition of the human carbonic anhydrase isoforms I, II, VII, IX and XII with benzene sulfonamides incorporating 4,5,6,7-tetrabromophthalimide moiety
Bioorganic & Medicinal Chemistry 2013.0
Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides
Bioorganic & Medicinal Chemistry Letters 2003.0
Carbonic anhydrase inhibitors: Synthesis and inhibition of the human cytosolic isozymes I and II and transmembrane isozymes IX, XII (cancer-associated) and XIV with 4-substituted 3-pyridinesulfonamides
European Journal of Medicinal Chemistry 2010.0