Synthesis and Evaluation of (Pyridylmethylene)tetrahydronaphthalenes/-indanes and Structurally Modified Derivatives:  Potent and Selective Inhibitors of Aldosterone Synthase

Journal of Medicinal Chemistry
2005.0

Abstract

Elevated aldosterone levels are key effectors for the development and progression of congestive heart failure and myocardial fibrosis. Recently, we proposed inhibition of aldosterone synthase (CYP11B2) as an innovative strategy for the treatment of these diseases. In this study, the synthesis and biological evaluation of E- and Z-(pyridylmethylene)tetrahydronaphthalenes and -indanes (1a,b-38a) is described. The activity of the compounds was determined using human CYP11B2, and the selectivity was evaluated toward the human steroidogenic enzymes CYP11B1, CYP19, and CYP17. The biological results revealed a few rather selective inhibitors of CYP11B1, some compounds inhibiting both CYP11B1 and CYP11B2, and a large number of highly selective inhibitors of CYP11B2. The most active inhibitor was the 3-pyridyl compound 5a (IC(50) = 7 nM). The pyrimidyl-substituted derivative 28a was found to be the most selective CYP11B2 inhibitor (IC(50) = 27 nM) in this series, showing a 120-fold selectivity for CYP11B1 (IC(50) = 3179 nM). Molecular modeling, i.e., examination of the electronic and steric features of selected compounds and homology modeling and docking, was used to understand the structure-activity/-selectivity relationships.

Knowledge Graph

Similar Paper

Synthesis and Evaluation of (Pyridylmethylene)tetrahydronaphthalenes/-indanes and Structurally Modified Derivatives:  Potent and Selective Inhibitors of Aldosterone Synthase
Journal of Medicinal Chemistry 2005.0
Synthesis and Evaluation of Imidazolylmethylenetetrahydronaphthalenes and Imidazolylmethyleneindanes:  Potent Inhibitors of Aldosterone Synthase
Journal of Medicinal Chemistry 2005.0
Synthesis and Evaluation of Heteroaryl-Substituted Dihydronaphthalenes and Indenes:  Potent and Selective Inhibitors of Aldosterone Synthase (CYP11B2) for the Treatment of Congestive Heart Failure and Myocardial Fibrosis
Journal of Medicinal Chemistry 2006.0
N-(Pyridin-3-yl)benzamides as selective inhibitors of human aldosterone synthase (CYP11B2)
Bioorganic & Medicinal Chemistry Letters 2011.0
Heteroaryl-Substituted Naphthalenes and Structurally Modified Derivatives:  Selective Inhibitors of CYP11B2 for the Treatment of Congestive Heart Failure and Myocardial Fibrosis
Journal of Medicinal Chemistry 2005.0
Fine-Tuning the Selectivity of Aldosterone Synthase Inhibitors: Structure−Activity and Structure−Selectivity Insights from Studies of Heteroaryl Substituted 1,2,5,6-Tetrahydropyrrolo[3,2,1-ij]quinolin-4-one Derivatives
Journal of Medicinal Chemistry 2011.0
Overcoming Undesirable CYP1A2 Inhibition of Pyridylnaphthalene-Type Aldosterone Synthase Inhibitors: Influence of Heteroaryl Derivatization on Potency and Selectivity
Journal of Medicinal Chemistry 2008.0
In Vivo Active Aldosterone Synthase Inhibitors with Improved Selectivity: Lead Optimization Providing a Series of Pyridine Substituted 3,4-Dihydro-1H-quinolin-2-one Derivatives
Journal of Medicinal Chemistry 2008.0
Heteroatom insertion into 3,4-dihydro-1H-quinolin-2-ones leads to potent and selective inhibitors of human and rat aldosterone synthase
European Journal of Medicinal Chemistry 2015.0
Novel Aldosterone Synthase Inhibitors with Extended Carbocyclic Skeleton by a Combined Ligand-Based and Structure-Based Drug Design Approach
Journal of Medicinal Chemistry 2008.0