2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and Analogues as A2A Adenosine Receptor Antagonists. Design, Synthesis, and Pharmacological Characterization

Journal of Medicinal Chemistry
2005.0

Abstract

Two types of adenosine receptor ligands were designed, i.e., 9H-purine and 1H-imidazo[4,5-c]pyridines, to obtain selective A(2A) antagonists, and we report here their synthesis and binding affinities for the four adenosine receptor subtypes A(1), A(2A), A(2B) and A(3). The design was carried out on the basis of the molecular modeling of a number of potent adenosine receptor antagonists described in the literature. Three compounds (25b-d) showed an interesting affinity and selectivity for the A(2A) subtype. One of them, i.e., ST1535 (2-n-butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine, 25b) (K(i) A(2A) = 6.6 nM, K(i) A(1)/A(2A) = 12; K(i) A(2B)/A(2A) = 58; K(i) A(3)/A(2A) > 160), was selected for in vivo study and shown to induce a dose-related increase in locomotor activity, suggestive of an A(2A) antagonist type of activity.

Knowledge Graph

Similar Paper

2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and Analogues as A<sub>2A</sub> Adenosine Receptor Antagonists. Design, Synthesis, and Pharmacological Characterization
Journal of Medicinal Chemistry 2005.0
Imidazo[2,1-i]purin-5-ones and Related Tricyclic Water-Soluble Purine Derivatives:  Potent A<sub>2A</sub>- and A<sub>3</sub>-Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 2002.0
N9-Benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido[2,1-f]purinediones: Synthesis and structure–activity relationships at adenosine A1 and A2A receptors
Bioorganic &amp; Medicinal Chemistry 2007.0
Discovery of Potent and Highly Selective A<sub>2B</sub>Adenosine Receptor Antagonist Chemotypes
Journal of Medicinal Chemistry 2016.0
Synthesis and biological activity of tricyclic cycloalkylimidazo-, pyrimido- and diazepinopurinediones
European Journal of Medicinal Chemistry 2011.0
4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as New Potent and Selective Human A<sub>3</sub>Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligand−Receptor Modeling Studies
Journal of Medicinal Chemistry 2006.0
Design, synthesis and biological evaluation of 2-hydrazinyladenosine derivatives as A2A adenosine receptor ligands
European Journal of Medicinal Chemistry 2019.0
Structure-activity profile of a series of novel triazoloquinazoline adenosine antagonists
Journal of Medicinal Chemistry 1988.0
1,2,4-Triazolo[1,5-a]quinoxaline as a Versatile Tool for the Design of Selective Human A<sub>3</sub>Adenosine Receptor Antagonists:  Synthesis, Biological Evaluation, and Molecular Modeling Studies of 2-(Hetero)aryl- and 2-Carboxy-Substitued Derivatives
Journal of Medicinal Chemistry 2005.0
Discovery of benzothiazole-based adenosine A2B receptor antagonists with improved A2A selectivity
Bioorganic &amp; Medicinal Chemistry Letters 2011.0