Novel 1,3-Disubstituted 8-(1-benzyl-1H-pyrazol-4-yl) Xanthines:  High Affinity and Selective A2BAdenosine Receptor Antagonists

Journal of Medicinal Chemistry
2006.0

Abstract

Adenosine has been suggested to induce bronchial hyperresponsiveness in asthmatics, which is believed to be an A(2B) adenosine receptor (AdoR) mediated pathway. We hypothesize that a selective, high-affinity A(2B) AdoR antagonist may provide therapeutic benefit in the treatment of asthma. In an attempt to identify a high-affinity, selective antagonist for the A(2B) AdoR, we synthesized 8-(C-4-pyrazolyl) xanthines. Compound 22, 8-(1H-pyrazol-4-yl)-1,3-dipropyl xanthine, is a N-1 unsubstituted pyrazole derivative that has favorable binding affinity (K(i) = 9 nM) for the A(2B) AdoR, but it is only 2-fold selective versus the A(1) AdoR. Introduction of a benzyl group at the N-1-pyrazole position of 22 resulted in 19, which had moderate selectivity. The initial focus of the SAR study was on the preparation of substituted benzyl derivatives of 19 because the corresponding phenyl, phenethyl, and phenpropyl derivatives showed a decrease in A(2B) AdoR affinity and selectivity relative to 19. The preferred substitution on the phenyl ring of 19 contains an electron-withdrawing group, specifically F or CF(3) at the m-position, as in 33 and 36 respectively, increases the selectivity while retaining the affinity for the A(2B) AdoR. Exploring disubstitutions on the phenyl ring of derivatives 33 and36 led to the 2-chloro-5-trifluoromethylphenyl derivative 50, which retained the A(2B) AdoR affinity but enhanced the selectivity relative to 36. After optimization of the substitution on the 8-pyrazole xanthine, 1,3-disubstitution of the xanthine core was explored with methyl, ethyl, butyl, and isobutyl groups. In comparison to the corresponding dipropyl analogues, the smaller 1,3-dialkyl groups (methyl and ethyl) increased the A(2B) AdoR binding selectivity of the xanthine derivatives while retaining the affinity. However, the larger 1,3-dialkyl groups (isobutyl and butyl) resulted in a decrease in both A(2B) AdoR affinity and selectivity. This final SAR optimization led to the discovery of 1,3-dimethyl derivative 60, 8-(1-(3-(trifluoromethyl) benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl xanthine, a high-affinity (K(i) = 1 nM) A(2B) AdoR antagonist with high selectivity (990-, 690-, and 1,000-) for the human A(1), A(2A,) and A(3) AdoRs.

Knowledge Graph

Similar Paper

Novel 1,3-Disubstituted 8-(1-benzyl-1H-pyrazol-4-yl) Xanthines:  High Affinity and Selective A<sub>2B</sub>Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 2006.0
Novel 8-(p-substituted-phenyl/benzyl)xanthines with selectivity for the A2A adenosine receptor possess bronchospasmolytic activity
European Journal of Medicinal Chemistry 2014.0
A 2B adenosine receptor antagonists: Design, synthesis and biological evaluation of novel xanthine derivatives
European Journal of Medicinal Chemistry 2017.0
Structure−Activity Relationships at Human and Rat A<sub>2B</sub> Adenosine Receptors of Xanthine Derivatives Substituted at the 1-, 3-, 7-, and 8-Positions
Journal of Medicinal Chemistry 2002.0
(E)-1,3-Dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthines: potent and selective adenosine A2 antagonists
Journal of Medicinal Chemistry 1992.0
4-Substituted-7-N-alkyl-N-acetyl 2-aminobenzothiazole amides: Drug-like and non-xanthine based A2B adenosine receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Synthesis and Structure−Activity Relationships of 3,7-Dimethyl-1-propargylxanthine Derivatives, A<sub>2A</sub>-Selective Adenosine Receptor Antagonists
Journal of Medicinal Chemistry 1997.0
Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A 1 and A 2A receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2016.0
8-Azaxanthine Derivatives as Antagonists of Adenosine Receptors
Journal of Medicinal Chemistry 1994.0
1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: Development and Characterization of Adenosine A<sub>2B</sub>Receptor Antagonists and a New Radioligand with Subnanomolar Affinity and Subtype Specificity
Journal of Medicinal Chemistry 2009.0