Synthesis of Adenophostin A Analogues Conjugating an Aromatic Group at the 5‘-Position as Potent IP3 Receptor Ligands

Journal of Medicinal Chemistry
2006.0

Abstract

Previous structure-activity relationship studies of adenophostin A, a potent IP(3) receptor agonist, led us to design the novel adenophostin A analogues 5a-c, conjugating an aromatic group at the 5'-position to develop useful IP(3) receptor ligands. The common key intermediate, a D-ribosyl alpha-D-glucoside 10alpha, was stereoselectively synthesized by a glycosidation with the 1-sulfinylglucoside donor 11, which was conformationally restricted by a 3,4-O-cyclic diketal protecting group. After introduction of an aromatic group at the 5-position of the ribose moiety, an adenine base was stereoselectively introduced at the anomeric beta-position to form 7a-c, where the tetra-O-i-butyryl donors 9a-c were significantly more effective than the corresponding O-acetyl donor. Thus, the target compounds 5a-c were synthesized via phosphorylation of the 2', 3' ', and 4' '-hydroxyls. The potencies of compounds 5a-c for Ca(2+) release were shown to be indistinguishable from that of adenophostin A, indicating that bulky substitutions at the 5'-position of adenophostin A are well-tolerated in the receptor binding. This biological activity of 5a-c can be rationalized by molecular modeling using the ligand binding domain of the IP(3) receptor.

Knowledge Graph

Similar Paper

Synthesis of Adenophostin A Analogues Conjugating an Aromatic Group at the 5‘-Position as Potent IP<sub>3</sub> Receptor Ligands
Journal of Medicinal Chemistry 2006.0
A Systematic Study of C-Glucoside Trisphosphates as myo-Inositol Trisphosphate Receptor Ligands. Synthesis of β-C-Glucoside Trisphosphates Based on the Conformational Restriction Strategy
Journal of Medicinal Chemistry 2006.0
Contribution of Phosphates and Adenine to the Potency of Adenophostins at the IP<sub>3</sub>Receptor: Synthesis of All Possible Bisphosphates of Adenophostin A
Journal of Medicinal Chemistry 2012.0
<scp>d</scp>-chiro-Inositol Ribophostin: A Highly Potent Agonist of <scp>d</scp>-myo-Inositol 1,4,5-Trisphosphate Receptors: Synthesis and Biological Activities
Journal of Medicinal Chemistry 2020.0
Bicyclic Analogues of <scp>d</scp>-myo-Inositol 1,4,5-Trisphosphate Related to Adenophostin A:  Synthesis and Biological Activity
Journal of Medicinal Chemistry 2001.0
Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Structure elucidation.
The Journal of Antibiotics 1994.0
Ribose-Modified Adenosine Analogs as Potential Partial Agonists for the Adenosine Receptor
Journal of Medicinal Chemistry 1995.0
Both <scp>d</scp>- and <scp>l</scp>-Glucose Polyphosphates Mimic <scp>d</scp>-myo-Inositol 1,4,5-Trisphosphate: New Synthetic Agonists and Partial Agonists at the Ins(1,4,5)P<sub>3</sub> Receptor
Journal of Medicinal Chemistry 2020.0
5‘-O-Alkyl Ethers of N,2-Substituted Adenosine Derivatives:  Partial Agonists for the Adenosine A<sub>1</sub> and A<sub>3</sub> Receptors
Journal of Medicinal Chemistry 2001.0
Flexible synthesis and biological evaluation of novel 5-deoxyadenophorine analogues
Bioorganic &amp; Medicinal Chemistry Letters 2006.0