A 2.13 Å Structure of E. coli Dihydrofolate Reductase Bound to a Novel Competitive Inhibitor Reveals a New Binding Surface Involving the M20 Loop Region

Journal of Medicinal Chemistry
2006.0

Abstract

Dihydrofolate reductase (DHFR) is a vital metabolic enzyme and thus a clinically prominent target in the design of antimetabolites. In this work, we identify 1,4-bis-{[N-(1-imino-1-guanidino-methyl)]sulfanylmethyl}-3,6-dimethyl-benzene (compound 1) as the correct structure of the previously reported DHFR inhibitor 1,4-bis-{(iminothioureidomethyl)aminomethyl}-3,6-dimethyl-benzene (compound 2). The fact that compound 1 has an uncharacteristic structure for DHFR inhibitors, and an affinity (KI of 11.5 nM) comparable to potent inhibitors such as methotrexate and trimethoprim, made this inhibitor of interest for further analysis. We have conducted a characterization of the primary interactions of compound 1 and DHFR using a combination of X-ray structure and SAR analysis. The crystal structure of E. coli DHFR in complex with compound 1 and NADPH reveals that one portion of this inhibitor exploits a unique binding surface, the M20 loop. The importance of this interface was further confirmed by SAR analysis and additional structural characterization.

Knowledge Graph

Similar Paper

A 2.13 Å Structure of E. coli Dihydrofolate Reductase Bound to a Novel Competitive Inhibitor Reveals a New Binding Surface Involving the M20 Loop Region
Journal of Medicinal Chemistry 2006.0
Receptor-based design of novel dihydrofolate reductase inhibitors: benzimidazole and indole derivatives
Journal of Medicinal Chemistry 1991.0
Quantitative structure-activity relationships for the inhibition of Escherichia coli dihydrofolate reductase by 5-(substituted benzyl)-2,4-diaminopyrimidines
Journal of Medicinal Chemistry 1988.0
Structural studies on bioactive compounds. 8. Synthesis, crystal structure and biological properties of a new series of 2,4-diamino-5-aryl-6-ethylpyrimidine dihydrofolate reductase inhibitors with in vivo activity against a methotrexate-resistant tumor cell line
Journal of Medicinal Chemistry 1989.0
Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships
Journal of Medicinal Chemistry 2010.0
Ligand binding studies, preliminary structure–activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase
European Journal of Medicinal Chemistry 2015.0
Receptor-based design of dihydrofolate reductase inhibitors: comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogs
Journal of Medicinal Chemistry 1985.0
Crystal Structure of the Anthrax Drug Target, Bacillus anthracis Dihydrofolate Reductase
Journal of Medicinal Chemistry 2007.0
Structure-Based Design of New Dihydrofolate Reductase Antibacterial Agents: 7-(Benzimidazol-1-yl)-2,4-diaminoquinazolines
Journal of Medicinal Chemistry 2014.0
Crystal Structure of Bacillus anthracis Dihydrofolate Reductase with the Dihydrophthalazine-Based Trimethoprim Derivative RAB1 Provides a Structural Explanation of Potency and Selectivity
Antimicrobial Agents and Chemotherapy 2009.0