Lead Compounds for Antimalarial Chemotherapy:  Purine Base Analogs Discriminate between Human and P. Falciparum 6-Oxopurine Phosphoribosyltransferases

Journal of Medicinal Chemistry
2006.0

Abstract

The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K(m) values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50 - 80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC(50) values as low as 1 microM.

Knowledge Graph

Similar Paper

Lead Compounds for Antimalarial Chemotherapy:  Purine Base Analogs Discriminate between Human and P. Falciparum 6-Oxopurine Phosphoribosyltransferases
Journal of Medicinal Chemistry 2006.0
Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase by Acyclic Nucleoside Phosphonates: A New Class of Antimalarial Therapeutics
Journal of Medicinal Chemistry 2009.0
Acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group Are Potent Inhibitors of 6-Oxopurine Phosphoribosyltransferases and Have Antimalarial Activity
Journal of Medicinal Chemistry 2013.0
Synthesis of potential inhibitors of hypoxanthine-guanine phosphoribosyltransferase for testing as antiprotozoal agents. 1. 7-Substituted 6-oxopurines
Journal of Medicinal Chemistry 1980.0
Anti-malarial activity of N6-modified purine analogues
Bioorganic & Medicinal Chemistry 2007.0
Exploring new inhibitors of Plasmodium falciparum purine nucleoside phosphorylase
European Journal of Medicinal Chemistry 2010.0
Novel nucleoside-based antimalarial compounds
Bioorganic & Medicinal Chemistry Letters 2016.0
First Crystal Structures of Mycobacterium tuberculosis 6-Oxopurine Phosphoribosyltransferase: Complexes with GMP and Pyrophosphate and with Acyclic Nucleoside Phosphonates Whose Prodrugs Have Antituberculosis Activity
Journal of Medicinal Chemistry 2015.0
Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues
Journal of Medicinal Chemistry 2019.0
Acyclic Nucleoside Analogues as Inhibitors ofPlasmodiumfalciparumdUTPase
Journal of Medicinal Chemistry 2006.0