Highly Potent Triazole-Based Tubulin Polymerization Inhibitors

Journal of Medicinal Chemistry
2007.0

Abstract

We describe the synthesis and biological evaluation of a series of tubulin polymerization inhibitors that contain the 1,2,4-triazole ring to retain the bioactive configuration afforded by the cis double bond in combretastatin A-4 (CA-4). Several of the subject compounds exhibited potent tubulin polymerization inhibitory activity as well as cytotoxicity against a variety of cancer cells including multi-drug-resistant (MDR) cancer cell lines. Attachment of the N-methyl-5-indolyl moiety to the 1,2,4-triazole core, as exemplified by compound 7, conferred optimal properties among this series. Computer docking and molecular simulations of 7 inside the colchicine binding site of tubulin enabled identification of residues most likely to interact strongly with these inhibitors and explain their potent anti-tubulin activity and cytotoxicity. It is hoped that results presented here will stimulate further examination of these substituted 1,2,4-triazoles as potential anti-cancer therapeutic agents.

Knowledge Graph

Similar Paper

Highly Potent Triazole-Based Tubulin Polymerization Inhibitors
Journal of Medicinal Chemistry 2007.0
Synthesis and biological evaluation of cis -restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers
Bioorganic & Medicinal Chemistry 2017.0
Potent Antitubulin Tumor Cell Cytotoxins Based on 3-Aroyl Indazoles
Journal of Medicinal Chemistry 2007.0
Synthesis and structure–activity relationships of 1,2,4-triazoles as a novel class of potent tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry Letters 2005.0
Synthesis and bioactive evaluation of N-((1-methyl-1H-indol-3-yl)methyl)-N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization
RSC Medicinal Chemistry 2022.0
Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity
Bioorganic & Medicinal Chemistry Letters 2013.0
Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers
Bioorganic & Medicinal Chemistry 2014.0
Synthesis and biological evaluation of 1-(4′-Indolyl and 6′-Quinolinyl) indoles as a new class of potent anticancer agents
European Journal of Medicinal Chemistry 2011.0
Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2021.0
Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site
European Journal of Medicinal Chemistry 2019.0