Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

The mechanisms involved in fluoroquinolone resistance in Salmonella enterica include target alterations and overexpression of efflux pumps. The present study evaluated the role of known and putative multidrug resistance efflux pumps and mutations in topoisomerase genes among laboratory-selected and naturally occurring fluoroquinolone-resistant Salmonella enterica serovar Typhimurium strains. Strains with ciprofloxacin MICs of 0.25, 4, 32, and 256 microg/ml were derived in vitro using serovar Typhimurium S21. These mutants also showed decreased susceptibility or resistance to many nonfluoroquinolone antimicrobials, including tetracycline, chloramphenicol, and several beta-lactams. The expression of efflux pump genes acrA, acrB, acrE, acrF, emrB, emrD, and mdlB were substantially increased (>or=2-fold) among the fluoroquinolone-resistant mutants. Increased expression was also observed, but to a lesser extent, with three other putative efflux pumps: mdtB (yegN), mdtC (yegO), and emrA among mutants with ciprofloxacin MICs of >or=32 microg/ml. Deletion of acrAB or tolC in S21 and its fluoroquinolone-resistant mutants resulted in increased susceptibility to fluoroquinolones and other tested antimicrobials. In naturally occurring fluoroquinolone-resistant serovar Typhimurium strains, deletion of acrAB or tolC increased fluoroquinolone susceptibility 4-fold, whereas replacement of gyrA double mutations (S83F D87N) with wild-type gyrA increased susceptibility>500-fold. These results indicate that a combination of topoisomerase gene mutations, as well as enhanced antimicrobial efflux, plays a critical role in the development of fluoroquinolone resistance in both laboratory-derived and naturally occurring quinolone-resistant serovar Typhimurium strains.

Knowledge Graph

Similar Paper

Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials
Antimicrobial Agents and Chemotherapy 2007.0
Mechanisms Accounting for Fluoroquinolone Resistance in Escherichia coli Clinical Isolates
Antimicrobial Agents and Chemotherapy 2009.0
Multiple Regulatory Pathways Associated with High-Level Ciprofloxacin and Multidrug Resistance in Salmonella enterica Serovar Enteritidis: Involvement of ramA and Other Global Regulators
Antimicrobial Agents and Chemotherapy 2009.0
ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium
Antimicrobial Agents and Chemotherapy 2008.0
Mechanisms of Resistance in Nontyphoidal Salmonella enterica Strains Exhibiting a Nonclassical Quinolone Resistance Phenotype
Antimicrobial Agents and Chemotherapy 2009.0
Fitness Costs and Stability of a High-Level Ciprofloxacin Resistance Phenotype in Salmonella enterica Serotype Enteritidis: Reduced Infectivity Associated with Decreased Expression of Salmonella Pathogenicity Island 1 Genes
Antimicrobial Agents and Chemotherapy 2010.0
Constitutive SoxS Expression in a Fluoroquinolone-Resistant Strain with a Truncated SoxR Protein and Identification of a New Member of themarA-soxS-robRegulon,mdtG
Antimicrobial Agents and Chemotherapy 2010.0
Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones
Antimicrobial Agents and Chemotherapy 2007.0
Cloning, Nucleotide Sequencing, and Analysis of the AcrAB-TolC Efflux Pump of Enterobacter cloacae and Determination of Its Involvement in Antibiotic Resistance in a Clinical Isolate
Antimicrobial Agents and Chemotherapy 2007.0
Contributions of the Combined Effects of Topoisomerase Mutations toward Fluoroquinolone Resistance in Escherichia coli
Antimicrobial Agents and Chemotherapy 2007.0