In Vitro Effects of Antimicrobial Agents on Planktonic and Biofilm Forms of Staphylococcus lugdunensis Clinical Isolates

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

Staphylococcus lugdunensis is an atypically virulent coagulase-negative staphylococcal species associated with acute and destructive infections that often resemble Staphylococcus aureus infections. Several types of infection caused by S. lugdunensis (e.g., native valve endocarditis, prosthetic joint infection, and intravascular catheter infection) are associated with biofilm formation, which may lead to an inability to eradicate the infection due to the intrinsic nature of biofilms to resist high levels of antibiotics. In this study, planktonic MICs and MBCs and biofilm bactericidal concentrations of 10 antistaphylococcal antimicrobial agents were measured for 15 S. lugdunensis isolates collected from patients with endocarditis, medical device infections, or skin and soft tissue infections. Planktonic isolates were susceptible to all agents studied, but biofilms were resistant to high concentrations of most of the drugs. However, moxifloxacin was able to kill 73% of isolates growing in biofilms at </=0.5 mug/ml. Relative to the effect on cell density, subinhibitory concentrations of nafcillin substantially stimulated biofilm formation of most isolates, whereas tetracycline and linezolid significantly decreased biofilm formation in 93 and 80% of isolates, respectively. An unexpected outcome of MBC testing was the observation that vancomycin was not bactericidal against 93% of S. lugdunensis isolates, suggesting widespread vancomycin tolerance in this species. These data provide insights into the response of S. lugdunensis isolates when challenged with various levels of antimicrobial agents in clinical use.

Knowledge Graph

Similar Paper

In Vitro Effects of Antimicrobial Agents on Planktonic and Biofilm Forms of Staphylococcus lugdunensis Clinical Isolates
Antimicrobial Agents and Chemotherapy 2007.0
Tolerance to the Glycopeptides Vancomycin and Teicoplanin in Coagulase-Negative Staphylococci
Antimicrobial Agents and Chemotherapy 2007.0
Activities of High-Dose Daptomycin, Vancomycin, and Moxifloxacin Alone or in Combination with Clarithromycin or Rifampin in a NovelIn VitroModel ofStaphylococcus aureusBiofilm
Antimicrobial Agents and Chemotherapy 2010.0
In Vitro Activities of Telavancin and Vancomycin against Biofilm-Producing Staphylococcus aureus , S . epidermidis , and Enterococcus faecalis Strains
Antimicrobial Agents and Chemotherapy 2009.0
High-Level Vancomycin-ResistantStaphylococcus aureusIsolates Associated with a Polymicrobial Biofilm
Antimicrobial Agents and Chemotherapy 2007.0
Inhibitory and Bactericidal Activities of Daptomycin, Vancomycin, and Teicoplanin against Methicillin-Resistant Staphylococcus aureus Isolates Collected from 1985 to 2007
Antimicrobial Agents and Chemotherapy 2009.0
Oritavancin Kills Stationary-Phase and BiofilmStaphylococcus aureusCells In Vitro
Antimicrobial Agents and Chemotherapy 2009.0
Comparative Activities of Daptomycin, Linezolid, and Tigecycline against Catheter-Related Methicillin-Resistant Staphylococcus Bacteremic Isolates Embedded in Biofilm
Antimicrobial Agents and Chemotherapy 2007.0
Candida albicans and Staphylococcus aureus Form Polymicrobial Biofilms: Effects on Antimicrobial Resistance
Antimicrobial Agents and Chemotherapy 2009.0
Impact of sarA on Antibiotic Susceptibility of Staphylococcus aureus in a Catheter-Associated In Vitro Model of Biofilm Formation
Antimicrobial Agents and Chemotherapy 2009.0