Pharmacological Properties of Bivalent Ligands Containing Butorphan Linked to Nalbuphine, Naltrexone, and Naloxone at μ, δ, and κ Opioid Receptors

Journal of Medicinal Chemistry
2007.0

Abstract

Our investigation of bivalent ligands at mu, delta, and kappa opioid receptors is focused on the preparation of ligands containing kappa agonist and mu agonist/antagonist pharmacophores at one end joined by a chain containing the mu antagonist pharmacophores (naltrexone, naloxone, or nalbuphine) at the other end. These ligands were evaluated in vitro by their binding affinity at mu, delta, and kappa opioid receptors and their relative efficacy in the [35S]GTPgammaS assay.

Knowledge Graph

Similar Paper

Pharmacological Properties of Bivalent Ligands Containing Butorphan Linked to Nalbuphine, Naltrexone, and Naloxone at μ, δ, and κ Opioid Receptors
Journal of Medicinal Chemistry 2007.0
Synthesis and Preliminary In vitro Investigation of Bivalent Ligands Containing Homo- and Heterodimeric Pharmacophores at μ, δ, and κ Opioid Receptors
Journal of Medicinal Chemistry 2006.0
Hybrid bivalent ligands with opiate and enkephalin pharmacophores
Journal of Medicinal Chemistry 1987.0
Synthesis and binding affinity of novel mono- and bivalent morphinan ligands for κ, μ, and δ opioid receptors
Bioorganic & Medicinal Chemistry 2011.0
High-affinity carbamate analogues of morphinan at opioid receptors
Bioorganic & Medicinal Chemistry Letters 2007.0
Preparation of bivalent agonists for targeting the mu opioid and cannabinoid receptors
European Journal of Medicinal Chemistry 2019.0
Design, Synthesis, and Biological Evaluation of 14-Heteroaromatic-Substituted Naltrexone Derivatives: Pharmacological Profile Switch from Mu Opioid Receptor Selectivity to Mu/Kappa Opioid Receptor Dual Selectivity
Journal of Medicinal Chemistry 2013.0
In-vitro investigation of oxazol and urea analogues of morphinan at opioid receptors
Bioorganic & Medicinal Chemistry 2007.0
Design and synthesis of naltrexone-derived affinity labels with nonequilibrium opioid agonist and antagonist activities. Evidence for the existence of different .mu. receptor subtypes in different tissues
Journal of Medicinal Chemistry 1984.0
Design, synthesis and biological evaluation of a bivalent μ opiate and adenosine A1 receptor antagonist
Bioorganic & Medicinal Chemistry Letters 2009.0