Cannabilactones: A Novel Class of CB2 Selective Agonists with Peripheral Analgesic Activity

Journal of Medicinal Chemistry
2007.0

Abstract

The identification of the CB2 cannabinoid receptor has provided a novel target for the development of therapeutically useful cannabinergic molecules. We have synthesized benzo[ c]chromen-6-one analogs possessing high affinity and selectivity for this receptor. These novel compounds are structurally related to cannabinol (6,6,9-trimethyl-3-pentyl-6 H-benzo[ c]chromen-1-ol), a natural constituent of cannabis with modest CB2 selectivity. Key pharmacophoric features of the new selective agonists include a 3-(1',1'-dimethylheptyl) side chain and a 6-oxo group on the cannabinoid tricyclic structure that characterizes this class of compounds as "cannabilactones." Our results suggest that the six-membered lactone pharmacophore is critical for CB2 receptor selectivity. Optimal receptor subtype selectivity of 490-fold and subnanomolar affinity for the CB2 receptor is exhibited by a 9-hydroxyl analog 5 (AM1714), while the 9-methoxy analog 4b (AM1710) had a 54-fold CB2 selectivity. X-ray crystallography and molecular modeling show the cannabilactones to have a planar ring conformation. In vitro testing revealed that the novel compounds are CB2 agonists, while in vivo testing of cannabilactones 4b and 5 found them to possess potent peripheral analgesic activity.

Knowledge Graph

Similar Paper

Cannabilactones: A Novel Class of CB2 Selective Agonists with Peripheral Analgesic Activity
Journal of Medicinal Chemistry 2007.0
7-Oxo-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxamides as Selective CB<sub>2</sub>Cannabinoid Receptor Ligands: Structural Investigations around a Novel Class of Full Agonists
Journal of Medicinal Chemistry 2012.0
Mastering tricyclic ring systems for desirable functional cannabinoid activity
European Journal of Medicinal Chemistry 2013.0
Novel pyridine derivatives as potent and selective CB2 cannabinoid receptor agonists
Bioorganic &amp; Medicinal Chemistry Letters 2009.0
Novel 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New CB<sub>2</sub>Cannabinoid Receptors Agonists:  Synthesis, Pharmacological Properties and Molecular Modeling
Journal of Medicinal Chemistry 2006.0
Sulfamoyl benzamides as novel CB2 cannabinoid receptor ligands
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
N-Methyl-3-(tetrahydro-2H-pyran-4-yl)-2,3,4,9-tetrahydro-1H-carbazole-6-carboxamides as a novel class of cannabinoid receptors agonists with low CNS penetration
Bioorganic &amp; Medicinal Chemistry Letters 2012.0
New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists
Bioorganic &amp; Medicinal Chemistry Letters 2007.0
Selective Cannabinoid Receptor Type 2 (CB2) Agonists: Optimization of a Series of Purines Leading to the Identification of a Clinical Candidate for the Treatment of Osteoarthritic Pain
Journal of Medicinal Chemistry 2013.0
Discovery and Optimization of a Novel Series ofN-Arylamide Oxadiazoles as Potent, Highly Selective and Orally Bioavailable Cannabinoid Receptor 2 (CB<sub>2</sub>) Agonists
Journal of Medicinal Chemistry 2008.0