Probing Distal Regions of the A2B Adenosine Receptor by Quantitative Structure−Activity Relationship Modeling of Known and Novel Agonists

Journal of Medicinal Chemistry
2008.0

Abstract

The binding modes at the A 2B adenosine receptor (AR) of 72 derivatives of adenosine and its 5'- N-methyluronamide with diverse substitutions at the 2 and N (6) positions were studied using a molecular modeling approach. The compounds in their receptor-docked conformations were used to build CoMFA and CoMSIA quantitative structure-activity relationship models. Various parameters, including different types of atomic charges, were examined. The best statistical parameters were obtained with a joint CoMFA and CoMSIA model: R (2) = 0.960, Q (2) = 0.676, SEE = 0.175, F = 158, and R (2) test = 0.782 for an independent test set containing 18 compounds. On the basis of the modeling results, four novel adenosine analogues, having elongated or bulky substitutions at N (6) position and/or 2 position, were synthesized and evaluated biologically. All of the proposed compounds were potent, full agonists at the A 2B AR in adenylate cyclase studies. Thus, in support of the modeling, bulky substitutions at both positions did not prevent A 2B AR activation, which predicts separate regions for docking of these moieties.

Knowledge Graph

Similar Paper

Probing Distal Regions of the A<sub>2B</sub> Adenosine Receptor by Quantitative Structure−Activity Relationship Modeling of Known and Novel Agonists
Journal of Medicinal Chemistry 2008.0
Design, Synthesis, and Evaluation of Novel A<sub>2A</sub> Adenosine Receptor Agonists
Journal of Medicinal Chemistry 2001.0
3D-QSAR CoMFA and CoMSIA studies on a set of diverse α1a-adrenergic receptor antagonists
Medicinal Chemistry Research 2011.0
Evaluation of Molecular Modeling of Agonist Binding in Light of the Crystallographic Structure of an Agonist-Bound A<sub>2A</sub>Adenosine Receptor
Journal of Medicinal Chemistry 2012.0
Molecular Modeling and Molecular Dynamics Simulation of the Human A<sub>2B</sub>Adenosine Receptor. The Study of the Possible Binding Modes of the A<sub>2B</sub>Receptor Antagonists
Journal of Medicinal Chemistry 2005.0
Insights into binding modes of adenosine A2B antagonists with ligand-based and receptor-based methods
European Journal of Medicinal Chemistry 2010.0
3D QSAR Analyses-Guided Rational Design of Novel Ligands for the (α4)<sub>2</sub>(β2)<sub>3</sub> Nicotinic Acetylcholine Receptor
Journal of Medicinal Chemistry 2003.0
3D-QSAR study of 8-azabicyclo[3.2.1] octane analogs antagonists of cholinergic receptor
Bioorganic &amp; Medicinal Chemistry Letters 2009.0
Structure-Based Scaffold Repurposing for G Protein-Coupled Receptors: Transformation of Adenosine Derivatives into 5HT<sub>2B</sub>/5HT<sub>2C</sub>Serotonin Receptor Antagonists
Journal of Medicinal Chemistry 2016.0
Cytisine derivatives as high affinity nAChR ligands: synthesis and comparative molecular field analysis
Il Farmaco 2002.0