Ampicillin-Resistant Non-β-Lactamase-Producing Haemophilus influenzae in Spain: Recent Emergence of Clonal Isolates with Increased Resistance to Cefotaxime and Cefixime

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

The sequence of the ftsI gene encoding the transpeptidase domain of penicillin-binding protein 3 (PBP 3) was determined for 354 nonconsecutive Haemophilus influenzae isolates from Spain; 17.8% of them were ampicillin susceptible, 56% were beta-lactamase nonproducing ampicillin resistant (BLNAR), 15.8% were beta-lactamase producers and ampicillin resistant, and 10.4% displayed both resistance mechanisms. The ftsI gene sequences had 28 different mutation patterns and amino acid substitutions at 23 positions. Some 93.2% of the BLNAR strains had amino acid substitutions at the Lys-Thr-Gly (KTG) motif, the two most common being Asn526 to Lys (83.9%) and Arg517 to His (9.3%). Amino acid substitutions at positions 377, 385, and 389, which conferred cefotaxime and cefixime MICs 10 to 60 times higher than those of susceptible strains, were found for the first time in Europe. In 72 isolates for which the repressor acrR gene of the AcrAB efflux pump was sequenced, numerous amino acid substitutions were found. Eight isolates with ampicillin MICs of 0.25 to 2 microg/ml showed changes that predicted the early termination of the acrR reading frame. Pulsed-field gel electrophoresis analysis demonstrated that most BLNAR strains were genetically diverse, although clonal dissemination was detected in a group of isolates presenting with increased resistance to cefotaxime and cefixime. Background antibiotic use at the community level revealed a marked trend toward increased amoxicillin-clavulanic acid consumption. BLNAR H. influenzae strains have arisen by vertical and horizontal spread and have evolved to adapt rapidly to the increased selective pressures posed by the use of oral penicillins and cephalosporins.

Knowledge Graph

Similar Paper

Ampicillin-Resistant Non-β-Lactamase-Producing Haemophilus influenzae in Spain: Recent Emergence of Clonal Isolates with Increased Resistance to Cefotaxime and Cefixime
Antimicrobial Agents and Chemotherapy 2007.0
Diversity of Ampicillin Resistance Genes and Antimicrobial Susceptibility Patterns in Haemophilus influenzae Strains Isolated in Korea
Antimicrobial Agents and Chemotherapy 2007.0
Genetic Characteristics and Clonal Dissemination of β-Lactamase-Negative Ampicillin-ResistantHaemophilus influenzaeStrains Isolated from the Upper Respiratory Tract of Patients in Japan
Antimicrobial Agents and Chemotherapy 2007.0
Antimicrobial Resistance in Haemophilus influenzae Respiratory Tract Isolates in Korea: Results of a Nationwide Acute Respiratory Infections Surveillance
Antimicrobial Agents and Chemotherapy 2010.0
Antimicrobial Activities of Piperacillin-Tazobactam against Haemophilus influenzae Isolates, Including β-Lactamase-Negative Ampicillin-Resistant and β-Lactamase-Positive Amoxicillin- Clavulanate-Resistant Isolates, and Mutations in Their Quinolone Resistance-Determining Regions
Antimicrobial Agents and Chemotherapy 2009.0
First Characterization of Heterogeneous Resistance to Imipenem in Invasive Nontypeable Haemophilus influenzae Isolates
Antimicrobial Agents and Chemotherapy 2007.0
Horizontal Gene Transfer of ftsI , Encoding Penicillin-Binding Protein 3, in Haemophilus influenzae
Antimicrobial Agents and Chemotherapy 2007.0
Low β-Lactamase-Negative Ampicillin-Resistant Haemophilus influenzae Strains Are Best Detected by Testing Amoxicillin Susceptibility by the Broth Microdilution Method
Antimicrobial Agents and Chemotherapy 2008.0
Comparison of the Efficacies of Oral β-Lactams in Selection of Haemophilus influenzae Transformants with Mutated ftsI Genes
Antimicrobial Agents and Chemotherapy 2008.0
Genotypic versus Phenotypic Characterization, with Respect to β-Lactam Susceptibility, of Haemophilus influenzae Isolates Exhibiting Decreased Susceptibility to β-Lactam Resistance Markers
Antimicrobial Agents and Chemotherapy 2009.0