Identification and Phenotypic Characterization of a β-Lactam-Dependent, Methicillin-Resistant Staphylococcus aureus Strain

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

Methicillin resistance in Staphylococcus aureus is primarily mediated by the acquired penicillin-binding protein PBP 2a, which is encoded by mecA. PBP 2a acts together with native PBP 2 to mediate oxacillin resistance by contributing complementary transpeptidase and transglycosylase activities, respectively. In this study, we have investigated a phenotype of beta-lactam dependence in a clinical methicillin-resistant S. aureus strain (strain 2884D) obtained by in vitro selection with ceftobiprole. 28884D, which grew very poorly in blood agar, required the presence of the beta-lactam antibiotics to grow. On the basis of this observation, we hypothesized that a gene or genes essential for growth were dependent on oxacillin induction. Identification and analysis of genes regulated by oxacillin were performed by both real-time reverse transcription-PCR and spotted microarray analysis. We found that mecA was constitutively expressed in strain 2884D and that the constitutive expression resulted from perturbations in the two systems involved in its regulation, i.e., MecI/MecR1 (staphylococcal chromosome cassette mec type I) and BlaI/BlaR1 (nonfunctional penicillinase operon). PBP 2 appeared to be poorly induced by oxacillin in 2884D. Further analysis of the PBP 2 two-component VraSR regulatory system showed that it was nonfunctional, accounting for the lack of response to oxacillin. Together, these results support the notion that limited PBP 2 availability may have led 2884D to become dependent on oxacillin-mediated mecA induction as a required survival mechanism.

Knowledge Graph

Similar Paper

Identification and Phenotypic Characterization of a β-Lactam-Dependent, Methicillin-Resistant Staphylococcus aureus Strain
Antimicrobial Agents and Chemotherapy 2007.0
Staphylococcus aureus PBP4 Is Essential for β-Lactam Resistance in Community-Acquired Methicillin-Resistant Strains
Antimicrobial Agents and Chemotherapy 2008.0
Molecular Basis and Phenotype of Methicillin Resistance in Staphylococcus aureus and Insights into New β-Lactams That Meet the Challenge
Antimicrobial Agents and Chemotherapy 2009.0
A mec A -Negative Strain of Methicillin-Resistant S taphylococcus aureus with High-Level β-Lactam Resistance Contains Mutations in Three Genes
Antimicrobial Agents and Chemotherapy 2010.0
Reconstruction of the Phenotypes of Methicillin-Resistant Staphylococcus aureu s by Replacement of the Staphylococcal Cassette Chromosome mec with a Plasmid-Borne Copy of Staphylococcus sciuri pbpD Gene
Antimicrobial Agents and Chemotherapy 2009.0
In Vitro and In Vivo Evaluations of Oxacillin Efficiency against mecA -Positive Oxacillin-Susceptible Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0
Effects of Ceftobiprole and Oxacillin on mecA Expression in Methicillin-Resistant Staphylococcus aureus Clinical Isolates
Antimicrobial Agents and Chemotherapy 2010.0
An Important Site in PBP2x of Penicillin-Resistant Clinical Isolates of Streptococcus pneumoniae : Mutational Analysis of Thr338
Antimicrobial Agents and Chemotherapy 2009.0
Serial Daptomycin Selection Generates Daptomycin-NonsusceptibleStaphylococcus aureusStrains with a Heterogeneous Vancomycin-Intermediate Phenotype
Antimicrobial Agents and Chemotherapy 2008.0
Spontaneous Deletion of the Methicillin Resistance Determinant, mecA , Partially Compensates for the Fitness Cost Associated with High-Level Vancomycin Resistance in Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0