Influence of High Mutation Rates on the Mechanisms and Dynamics of In Vitro and In Vivo Resistance Development to Single or Combined Antipseudomonal Agents

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

We studied the mechanisms and dynamics of the development of resistance to ceftazidime (CAZ) alone or combined with tobramycin (TOB) or ciprofloxacin (CIP) in vitro and in vivo (using a mouse model of lung infection with human antibiotic regimens). Pseudomonas aeruginosa strain PAO1 and its hypermutable derivative PAODeltamutS were used, and the results were compared with those previously obtained with CIP, TOB, and CIP plus TOB (CIP-TOB) under the same conditions. An important (200-fold) amplification of the number of resistant mutant cells was documented for PAODeltamutS-infected mice that were under CAZ treatment compared to the number for mice that received placebo, whereas the median number of resistant mutant cells was below the detection limits for mice infected by PAO1. These results were intermediate between the high amplification with CIP (50,000-fold) and the low amplification with TOB (10-fold). All CAZ-resistant single mutant cells selected in vitro or in vivo hyperproduced AmpC. On the other hand, the three combinations studied were found to be highly effective in the prevention of in vivo resistance development in mice infected with PAODeltamutS, although the highest therapeutic efficacy (in terms of mortality and total bacterial load reduction) compared to those of the individual regimens was obtained with CIP-TOB and the lowest was with CAZ-CIP. Nevertheless, mutant cells that were resistant to the three combinations tested were readily selected in vitro for PAODeltamutS (mutation rates from 1.2 x 10(-9) to 5.8 x 10(-11)) but not for PAO1, highlighting the potential risk for antimicrobial resistance development associated with the presence of hypermutable strains, even when combined therapy was used. All five independent CAZ-TOB-resistant PAODeltamutS double mutants studied presented the same resistance mechanism (AmpC hyperproduction plus an aminoglycoside resistance mechanism not related to MexXY), whereas four different combinations of resistance mechanisms were documented for the five CAZ-CIP-resistant double mutants.

Knowledge Graph

Similar Paper

Influence of High Mutation Rates on the Mechanisms and Dynamics of In Vitro and In Vivo Resistance Development to Single or Combined Antipseudomonal Agents
Antimicrobial Agents and Chemotherapy 2007.0
Development of Resistance in Wild-Type and Hypermutable Pseudomonas aeruginosa Strains Exposed to Clinical Pharmacokinetic Profiles of Meropenem and Ceftazidime Simulated In Vitro
Antimicrobial Agents and Chemotherapy 2007.0
Frequency of Spontaneous Resistance to Fosfomycin Combined with Different Antibiotics in Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2010.0
Antibiotic Resistance in Pseudomonas aeruginosa Strains with Increased Mutation Frequency Due to Inactivation of the DNA Oxidative Repair System
Antimicrobial Agents and Chemotherapy 2009.0
Azithromycin in Pseudomonas aeruginosa Biofilms: Bactericidal Activity and Selection of nfxB Mutants
Antimicrobial Agents and Chemotherapy 2009.0
Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility
Antimicrobial Agents and Chemotherapy 2008.0
Fluoroquinolone Resistance in Haemophilus influenzae Is Associated with Hypermutability
Antimicrobial Agents and Chemotherapy 2007.0
Cumulative Effects of Several Nonenzymatic Mechanisms on the Resistance of Pseudomonas aeruginosa to Aminoglycosides
Antimicrobial Agents and Chemotherapy 2007.0
Fluoroquinolone-Resistant Mutants ofBurkholderia cepacia
Antimicrobial Agents and Chemotherapy 2008.0
Efflux Pumps, OprD Porin, AmpC β-Lactamase, and Multiresistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients
Antimicrobial Agents and Chemotherapy 2010.0