Insights into the Mechanism of Partial Agonism

Journal of Biological Chemistry
2007.0

Abstract

The peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of glucose and lipid metabolism. They are activated by natural ligands, such as fatty acids, and are also targets of synthetic antidiabetic and hypolipidemic drugs. By using cell-based reporter assays, we studied the transactivation activity of two enantiomeric ureidofibrate-like derivatives. In particular, we show that the R-enantiomer, (R)-1, is a full agonist of PPARgamma, whereas the S-enantiomer, (S)-1, is a less potent partial agonist. Most importantly, we report the x-ray crystal structures of the PPARgamma ligand binding domain complexed with the R- and the S-enantiomer, respectively. The analysis of the two crystal structures shows that the different degree of stabilization of the helix 12 induced by the ligand determines its behavior as full or partial agonist. Another crystal structure of the PPARgamma.(S)-1 complex, only differing in the soaking time of the ligand, is also presented. The comparison of the two structures of the complexes with the partial agonist reveals significant differences and is suggestive of the possible coexistence in solution of transcriptionally active and inactive forms of helix 12 in the presence of a partial agonist. Mutation analysis confirms the importance of Leu(465), Leu(469), and Ile(472) in the activation by (R)-1 and underscores the key role of Gln(286) in the PPARgamma activity.

Knowledge Graph

Similar Paper

Insights into the Mechanism of Partial Agonism
Journal of Biological Chemistry 2007.0
Crystal Structure of the Peroxisome Proliferator-Activated Receptor γ (PPARγ) Ligand Binding Domain Complexed with a Novel Partial Agonist: A New Region of the Hydrophobic Pocket Could Be Exploited for Drug Design
Journal of Medicinal Chemistry 2008.0
Synthesis, Biological Evaluation, and Molecular Modeling Investigation of New Chiral Fibrates with PPARα and PPARγ Agonist Activity
Journal of Medicinal Chemistry 2005.0
Design, Synthesis, and Structural Analysis of Phenylpropanoic Acid-Type PPARγ-Selective Agonists: Discovery of Reversed Stereochemistry−Activity Relationship
Journal of Medicinal Chemistry 2011.0
Design of a partial PPARδ agonist
Bioorganic & Medicinal Chemistry Letters 2007.0
Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression
Bioorganic & Medicinal Chemistry Letters 2017.0
Synthesis, Characterization and Biological Evaluation of Ureidofibrate-Like Derivatives Endowed with Peroxisome Proliferator-Activated Receptor Activity
Journal of Medicinal Chemistry 2012.0
Synthesis and Biological and Structural Characterization of the Dual-Acting Peroxisome Proliferator-Activated Receptor α/γ Agonist Ragaglitazar
Journal of Medicinal Chemistry 2003.0
Structure-based identification of novel PPAR gamma ligands
Bioorganic & Medicinal Chemistry Letters 2013.0
Design, Synthesis, and Structure−Activity Relationship Studies of Novel 2,4,6-Trisubstituted-5-pyrimidinecarboxylic Acids as Peroxisome Proliferator-Activated Receptor γ (PPARγ) Partial Agonists with Comparable Antidiabetic Efficacy to Rosiglitazone
Journal of Medicinal Chemistry 2010.0