Synthesis of novel ketoconazole derivatives as inhibitors of the human Pregnane X Receptor (PXR; NR1I2; also termed SXR, PAR)

Bioorganic & Medicinal Chemistry Letters
2008.0

Abstract

PXR, pregnane X receptor, in its activated state, is a validated target for controlling certain drug-drug interactions in humans. In this context, there is a paucity of inhibitors directed toward activated PXR. Using prior observations with ketoconazole as a PXR inhibitor, the target compound 3 was synthesized from (s)-glycidol with overall 56% yield. (+)-Glycidol was reacted with 4-bromophenol and potassium carbonate in DMF to yield the ring opened compound 6. This was then heated to reflux in benzene along with 2', 4'-difluoroacetophenone and catalytic amount of para-toluene sulfonic acid to yield 8. The resultant acetal 8 was then functionalized using Palladium chemistry to yield the target compound 3. The activity of the compound was compared with ketoconazole and UCL2158H. However, in contrast with ketoconazole (IC(50) approximately 0.020 microM; approximately 100% inhibition), 3 has negligible effects on inhibition of microsomal CYP450 (maximum approximately 20% inhibition) at concentrations >40 microM. In vitro, micromolar concentration of ketoconazole is toxic to passaged human cell lines, while 3 does not exhibit cytotoxicity up to concentrations approximately 100 microM (viability >85%). This is the first demonstration of a chemical analog of a PXR inhibitor that retains activity against activated PXR. Furthermore, in contrast with ketoconazole, 3 is less toxic in human cell lines and has negligible CYP450 activity.

Knowledge Graph

Similar Paper

Synthesis of novel ketoconazole derivatives as inhibitors of the human Pregnane X Receptor (PXR; NR1I2; also termed SXR, PAR)
Bioorganic & Medicinal Chemistry Letters 2008.0
Design and Optimization of 1H-1,2,3-Triazole-4-carboxamides as Novel, Potent, and Selective Inverse Agonists and Antagonists of PXR
Journal of Medicinal Chemistry 2022.0
Further Studies with the 2-Amino-1,3-thiazol-4(5H)-one Class of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors: Reducing Pregnane X Receptor Activity and Exploring Activity in a Monkey Pharmacodynamic Model
Journal of Medicinal Chemistry 2008.0
Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70
Journal of Medicinal Chemistry 2021.0
Identification of Clinically Used Drugs That Activate Pregnane X Receptors
Drug Metabolism and Disposition 2011.0
Identification of bicyclic hexafluoroisopropyl alcohol sulfonamides as retinoic acid receptor-related orphan receptor gamma (RORγ/RORc) inverse agonists. Employing structure-based drug design to improve pregnane X receptor (PXR) selectivity
Bioorganic & Medicinal Chemistry Letters 2018.0
Synthesis of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase (CYP51)
European Journal of Medicinal Chemistry 2007.0
Synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a range of 4-substituted phenyl alkyl imidazole-based inhibitors of the enzyme complex 17α-hydroxylase/17,20-lyase (P45017α)
Bioorganic & Medicinal Chemistry Letters 2006.0
Lathyrane Diterpenoids as Novel hPXR Agonists: Isolation, Structural Modification, and Structure–Activity Relationships
ACS Medicinal Chemistry Letters 2021.0
Development of novel silanol-based human pregnane X receptor (PXR) agonists with improved receptor selectivity
Bioorganic & Medicinal Chemistry 2018.0