Selective Influence on Contextual Memory: Physiochemical Properties Associated with Selectivity of Benzodiazepine Ligands at GABAAReceptors Containing the α5 Subunit

Journal of Medicinal Chemistry
2008.0

Abstract

Ligands that bind to the benzodiazepine binding site on the GABA A receptor can attenuate or potentiate cognition. To investigate this property, the chemical determinants favoring selective binding or selective activation of the alpha5beta2gamma2 and alpha1beta2gamma2 GABA A receptor isoforms were examined. A 3D-pharmacophore, developed from a diverse set of BDZR ligands, was used as an initial basis for multivariate discriminant, fragment, and 3D-quantitative structure-activity relationship analyses, which formed the criteria for selection of additional compounds for study. We found that the electrostatic potential near the ligands' terminal substituent correlated with its binding selectivity toward the alpha5beta2gamma2 versus alpha1beta2gamma2 isoform; while the fragment length and frontier molecular orbital energetics correlated with a compounds influence on electrophysiological activity. Compounds with promising alpha5 profiles were further assessed for their ability to attenuate scopolamine-induced contextual memory impairment in mice. Surprisingly, both weak inverse agonist and antagonists that display binding selectivity toward the alpha5beta2gamma2 isoform were able to attenuate contextual memory impairment.

Knowledge Graph

Similar Paper

Selective Influence on Contextual Memory: Physiochemical Properties Associated with Selectivity of Benzodiazepine Ligands at GABA<sub>A</sub>Receptors Containing the α5 Subunit
Journal of Medicinal Chemistry 2008.0
Pharmacophore/Receptor Models for GABA<sub>A</sub>/BzR Subtypes (α1β3γ2, α5β3γ2, and α6β3γ2) via a Comprehensive Ligand-Mapping Approach
Journal of Medicinal Chemistry 2000.0
Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies
Bioorganic &amp; Medicinal Chemistry Letters 2022.0
4-Quinolone Derivatives:  High-Affinity Ligands at the Benzodiazepine Site of Brain GABA<sub>A</sub>Receptors. Synthesis, Pharmacology, and Pharmacophore Modeling
Journal of Medicinal Chemistry 2006.0
3-Phenyl-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and Analogues:  High-Affinity γ-Aminobutyric Acid-A Benzodiazepine Receptor Ligands with α2, α3, and α5-Subtype Binding Selectivity over α1
Journal of Medicinal Chemistry 2004.0
Novel 3-iodo-8-ethoxypyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide as promising lead for design of α5-inverse agonist useful tools for therapy of mnemonic damage
Bioorganic &amp; Medicinal Chemistry 2007.0
New Insight into the Central Benzodiazepine Receptor–Ligand Interactions: Design, Synthesis, Biological Evaluation, and Molecular Modeling of 3-Substituted 6-Phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and Related Compounds
Journal of Medicinal Chemistry 2011.0
Synthesis, in Vivo Evaluation, and Molecular Modeling Studies of New Pyrazolo[5,1-c][1,2,4]benzotriazine 5-Oxide Derivatives. Identification of a Bifunctional Hydrogen Bond Area Related to the Inverse Agonism
Journal of Medicinal Chemistry 2009.0
Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABA<sub>A</sub>R) Modulators Acting at the Benzodiazepine Binding Site: An Update
Journal of Medicinal Chemistry 2020.0
Synthesis and Biological Evaluation of 3-Heterocyclyl-7,8,9,10-tetrahydro-(7,10-ethano)-1,2,4-triazolo[3,4-a]phthalazines and Analogues as Subtype-Selective Inverse Agonists for the GABA<sub>A</sub>α5 Benzodiazepine Binding Site
Journal of Medicinal Chemistry 2004.0