Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference

Bioorganic & Medicinal Chemistry
2009.0

Abstract

Thiazide and high ceiling diuretics were recently shown to inhibit all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1) with a very different profile as compared to classical inhibitors, such as acetazolamide, methazolamide, and ethoxzolamide. Some of these structurally related compounds have a very different behavior against the widespread isozyme CA II, with chlorthalidone, trichloromethiazide, and furosemide being efficient inhibitors against CA II (K(I)s of 65-138 nM), whereas indapamide is a much weaker one (K(I) of 2520 nM). Furthermore, some of these diuretics are quite efficient (low nanomolar) inhibitors of other isoforms, for example, chlorthalidone against hCA VB, VII, IX, and XIII; indapamide against CA VII, IX, XII, and XIII, trichloromethiazide against CA VII and IX, and furosemide against CA I and XIV. Examining the four X-ray crystal structures of their CA II adducts, we observed several (2-3) active site water molecules interacting with the chlorthalidone, trichloromethiazide, and furosemide scaffolds which may be responsible for this important difference of activity. Indeed, indapamide bound to CA II has no interactions with active site water molecules. Chlorthalidone bound within the CA II active site is in an enolic (lactimic) tautomeric form, with the enolic OH also participating in two strong hydrogen bonds with Asn67 and a water molecule. The newly evidenced binding modes of these diuretics may be exploited for designing better CA II inhibitors as well as compounds with selectivity/affinity for various isoforms with medicinal chemistry applications.

Knowledge Graph

Similar Paper

Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference
Bioorganic & Medicinal Chemistry 2009.0
Carbonic Anhydrase Inhibitors. Comparison of Chlorthalidone and Indapamide X-ray Crystal Structures in Adducts with Isozyme II: When Three Water Molecules and the Keto−Enol Tautomerism Make the Difference
Journal of Medicinal Chemistry 2009.0
Carbonic anhydrase inhibitors. Interaction of indapamide and related diuretics with 12 mammalian isozymes and X-ray crystallographic studies for the indapamide–isozyme II adduct
Bioorganic & Medicinal Chemistry Letters 2008.0
Carbonic anhydrase inhibitors. Interaction of 2-N,N-dimethylamino-1,3,4-thiadiazole-5-methanesulfonamide with 12 mammalian isoforms: Kinetic and X-ray crystallographic studies
Bioorganic & Medicinal Chemistry Letters 2008.0
Carbonic anhydrase inhibitors. The X-ray crystal structure of human isoform II in adduct with an adamantyl analogue of acetazolamide resides in a less utilized binding pocket than most hydrophobic inhibitors
Bioorganic & Medicinal Chemistry Letters 2010.0
Carbonic anhydrase inhibitors: The X-ray crystal structure of ethoxzolamide complexed to human isoform II reveals the importance of thr200 and gln92 for obtaining tight-binding inhibitors
Bioorganic & Medicinal Chemistry Letters 2008.0
Indapamide-like benzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, and XIII
Bioorganic & Medicinal Chemistry 2010.0
Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111
Bioorganic & Medicinal Chemistry 2016.0
5-Substituted-(1,2,3-triazol-4-yl)thiophene-2-sulfonamides strongly inhibit human carbonic anhydrases I, II, IX and XII: Solution and X-ray crystallographic studies
Bioorganic & Medicinal Chemistry 2013.0
Structural effect of phenyl ring compared to thiadiazole based adamantyl-sulfonamides on carbonic anhydrase inhibition
Bioorganic & Medicinal Chemistry 2013.0